Properties

Label 305760.eel
Modulus $305760$
Conductor $30576$
Order $84$
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(305760, base_ring=CyclotomicField(84)) M = H._module chi = DirichletCharacter(H, M([0,63,42,0,30,7])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(41,305760)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(305760\)
Conductor: \(30576\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(84\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 30576.ben
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{84})$
Fixed field: Number field defined by a degree 84 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(11\) \(17\) \(19\) \(23\) \(29\) \(31\) \(37\) \(41\) \(43\) \(47\)
\(\chi_{305760}(41,\cdot)\) \(-1\) \(1\) \(e\left(\frac{5}{42}\right)\) \(e\left(\frac{25}{42}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{17}{42}\right)\) \(e\left(\frac{43}{84}\right)\) \(i\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{37}{84}\right)\) \(e\left(\frac{5}{84}\right)\) \(e\left(\frac{15}{28}\right)\)
\(\chi_{305760}(5081,\cdot)\) \(-1\) \(1\) \(e\left(\frac{17}{42}\right)\) \(e\left(\frac{1}{42}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{41}{42}\right)\) \(e\left(\frac{37}{84}\right)\) \(-i\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{67}{84}\right)\) \(e\left(\frac{59}{84}\right)\) \(e\left(\frac{9}{28}\right)\)
\(\chi_{305760}(16841,\cdot)\) \(-1\) \(1\) \(e\left(\frac{31}{42}\right)\) \(e\left(\frac{29}{42}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{13}{42}\right)\) \(e\left(\frac{23}{84}\right)\) \(i\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{53}{84}\right)\) \(e\left(\frac{73}{84}\right)\) \(e\left(\frac{23}{28}\right)\)
\(\chi_{305760}(31961,\cdot)\) \(-1\) \(1\) \(e\left(\frac{25}{42}\right)\) \(e\left(\frac{41}{42}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{42}\right)\) \(e\left(\frac{5}{84}\right)\) \(-i\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{59}{84}\right)\) \(e\left(\frac{67}{84}\right)\) \(e\left(\frac{5}{28}\right)\)
\(\chi_{305760}(43721,\cdot)\) \(-1\) \(1\) \(e\left(\frac{11}{42}\right)\) \(e\left(\frac{13}{42}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{29}{42}\right)\) \(e\left(\frac{19}{84}\right)\) \(i\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{73}{84}\right)\) \(e\left(\frac{53}{84}\right)\) \(e\left(\frac{19}{28}\right)\)
\(\chi_{305760}(48761,\cdot)\) \(-1\) \(1\) \(e\left(\frac{23}{42}\right)\) \(e\left(\frac{31}{42}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{11}{42}\right)\) \(e\left(\frac{13}{84}\right)\) \(-i\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{19}{84}\right)\) \(e\left(\frac{23}{84}\right)\) \(e\left(\frac{13}{28}\right)\)
\(\chi_{305760}(60521,\cdot)\) \(-1\) \(1\) \(e\left(\frac{37}{42}\right)\) \(e\left(\frac{17}{42}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{25}{42}\right)\) \(e\left(\frac{83}{84}\right)\) \(i\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{5}{84}\right)\) \(e\left(\frac{37}{84}\right)\) \(e\left(\frac{27}{28}\right)\)
\(\chi_{305760}(75641,\cdot)\) \(-1\) \(1\) \(e\left(\frac{31}{42}\right)\) \(e\left(\frac{29}{42}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{13}{42}\right)\) \(e\left(\frac{65}{84}\right)\) \(-i\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{11}{84}\right)\) \(e\left(\frac{31}{84}\right)\) \(e\left(\frac{9}{28}\right)\)
\(\chi_{305760}(87401,\cdot)\) \(-1\) \(1\) \(e\left(\frac{17}{42}\right)\) \(e\left(\frac{1}{42}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{41}{42}\right)\) \(e\left(\frac{79}{84}\right)\) \(i\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{25}{84}\right)\) \(e\left(\frac{17}{84}\right)\) \(e\left(\frac{23}{28}\right)\)
\(\chi_{305760}(92441,\cdot)\) \(-1\) \(1\) \(e\left(\frac{29}{42}\right)\) \(e\left(\frac{19}{42}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{23}{42}\right)\) \(e\left(\frac{73}{84}\right)\) \(-i\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{55}{84}\right)\) \(e\left(\frac{71}{84}\right)\) \(e\left(\frac{17}{28}\right)\)
\(\chi_{305760}(104201,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{42}\right)\) \(e\left(\frac{5}{42}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{37}{42}\right)\) \(e\left(\frac{59}{84}\right)\) \(i\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{41}{84}\right)\) \(e\left(\frac{1}{84}\right)\) \(e\left(\frac{3}{28}\right)\)
\(\chi_{305760}(119321,\cdot)\) \(-1\) \(1\) \(e\left(\frac{37}{42}\right)\) \(e\left(\frac{17}{42}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{25}{42}\right)\) \(e\left(\frac{41}{84}\right)\) \(-i\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{47}{84}\right)\) \(e\left(\frac{79}{84}\right)\) \(e\left(\frac{13}{28}\right)\)
\(\chi_{305760}(131081,\cdot)\) \(-1\) \(1\) \(e\left(\frac{23}{42}\right)\) \(e\left(\frac{31}{42}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{11}{42}\right)\) \(e\left(\frac{55}{84}\right)\) \(i\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{61}{84}\right)\) \(e\left(\frac{65}{84}\right)\) \(e\left(\frac{27}{28}\right)\)
\(\chi_{305760}(163001,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{42}\right)\) \(e\left(\frac{5}{42}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{37}{42}\right)\) \(e\left(\frac{17}{84}\right)\) \(-i\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{83}{84}\right)\) \(e\left(\frac{43}{84}\right)\) \(e\left(\frac{17}{28}\right)\)
\(\chi_{305760}(174761,\cdot)\) \(-1\) \(1\) \(e\left(\frac{29}{42}\right)\) \(e\left(\frac{19}{42}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{23}{42}\right)\) \(e\left(\frac{31}{84}\right)\) \(i\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{13}{84}\right)\) \(e\left(\frac{29}{84}\right)\) \(e\left(\frac{3}{28}\right)\)
\(\chi_{305760}(179801,\cdot)\) \(-1\) \(1\) \(e\left(\frac{41}{42}\right)\) \(e\left(\frac{37}{42}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{42}\right)\) \(e\left(\frac{25}{84}\right)\) \(-i\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{43}{84}\right)\) \(e\left(\frac{83}{84}\right)\) \(e\left(\frac{25}{28}\right)\)
\(\chi_{305760}(191561,\cdot)\) \(-1\) \(1\) \(e\left(\frac{13}{42}\right)\) \(e\left(\frac{23}{42}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{19}{42}\right)\) \(e\left(\frac{11}{84}\right)\) \(i\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{29}{84}\right)\) \(e\left(\frac{13}{84}\right)\) \(e\left(\frac{11}{28}\right)\)
\(\chi_{305760}(223481,\cdot)\) \(-1\) \(1\) \(e\left(\frac{5}{42}\right)\) \(e\left(\frac{25}{42}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{17}{42}\right)\) \(e\left(\frac{1}{84}\right)\) \(-i\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{79}{84}\right)\) \(e\left(\frac{47}{84}\right)\) \(e\left(\frac{1}{28}\right)\)
\(\chi_{305760}(235241,\cdot)\) \(-1\) \(1\) \(e\left(\frac{19}{42}\right)\) \(e\left(\frac{11}{42}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{31}{42}\right)\) \(e\left(\frac{71}{84}\right)\) \(i\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{65}{84}\right)\) \(e\left(\frac{61}{84}\right)\) \(e\left(\frac{15}{28}\right)\)
\(\chi_{305760}(250361,\cdot)\) \(-1\) \(1\) \(e\left(\frac{13}{42}\right)\) \(e\left(\frac{23}{42}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{19}{42}\right)\) \(e\left(\frac{53}{84}\right)\) \(-i\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{71}{84}\right)\) \(e\left(\frac{55}{84}\right)\) \(e\left(\frac{25}{28}\right)\)
\(\chi_{305760}(262121,\cdot)\) \(-1\) \(1\) \(e\left(\frac{41}{42}\right)\) \(e\left(\frac{37}{42}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{42}\right)\) \(e\left(\frac{67}{84}\right)\) \(i\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{1}{84}\right)\) \(e\left(\frac{41}{84}\right)\) \(e\left(\frac{11}{28}\right)\)
\(\chi_{305760}(267161,\cdot)\) \(-1\) \(1\) \(e\left(\frac{11}{42}\right)\) \(e\left(\frac{13}{42}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{29}{42}\right)\) \(e\left(\frac{61}{84}\right)\) \(-i\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{31}{84}\right)\) \(e\left(\frac{11}{84}\right)\) \(e\left(\frac{5}{28}\right)\)
\(\chi_{305760}(278921,\cdot)\) \(-1\) \(1\) \(e\left(\frac{25}{42}\right)\) \(e\left(\frac{41}{42}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{42}\right)\) \(e\left(\frac{47}{84}\right)\) \(i\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{17}{84}\right)\) \(e\left(\frac{25}{84}\right)\) \(e\left(\frac{19}{28}\right)\)
\(\chi_{305760}(294041,\cdot)\) \(-1\) \(1\) \(e\left(\frac{19}{42}\right)\) \(e\left(\frac{11}{42}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{31}{42}\right)\) \(e\left(\frac{29}{84}\right)\) \(-i\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{23}{84}\right)\) \(e\left(\frac{19}{84}\right)\) \(e\left(\frac{1}{28}\right)\)