![Copy content]() sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(305760, base_ring=CyclotomicField(12))
M = H._module
chi = DirichletCharacter(H, M([0,0,0,0,0,1]))
        sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(305760, base_ring=CyclotomicField(12))
M = H._module
chi = DirichletCharacter(H, M([0,0,0,0,0,1]))
         
     
    
    
        ![Copy content]() pari:[g,chi] = znchar(Mod(211681,305760))
        pari:[g,chi] = znchar(Mod(211681,305760))
         
     
    
  \(\chi_{305760}(47041,\cdot)\)
  \(\chi_{305760}(141121,\cdot)\)
  \(\chi_{305760}(211681,\cdot)\)
  \(\chi_{305760}(282241,\cdot)\)
    
        ![Copy content]() sage:chi.galois_orbit()
        sage:chi.galois_orbit()
         
     
    
    
        ![Copy content]() pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
        pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
         
     
    
 
\((95551,114661,101921,183457,18721,211681)\) → \((1,1,1,1,1,e\left(\frac{1}{12}\right))\)
  
    
      
        | \(a\) | \(-1\) | \(1\) | \(11\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) | \(47\) | 
    
    
      | \( \chi_{ 305760 }(211681, a) \) | \(-1\) | \(1\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(-i\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(i\) | 
  
 
    
        ![Copy content]() sage:chi.jacobi_sum(n)
        sage:chi.jacobi_sum(n)