Properties

Label 305760.69491
Modulus $305760$
Conductor $61152$
Order $168$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(305760, base_ring=CyclotomicField(168)) M = H._module chi = DirichletCharacter(H, M([84,147,84,0,8,70]))
 
Copy content pari:[g,chi] = znchar(Mod(69491,305760))
 

Basic properties

Modulus: \(305760\)
Conductor: \(61152\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(168\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{61152}(8339,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 305760.fmx

\(\chi_{305760}(11,\cdot)\) \(\chi_{305760}(3971,\cdot)\) \(\chi_{305760}(5891,\cdot)\) \(\chi_{305760}(8171,\cdot)\) \(\chi_{305760}(21851,\cdot)\) \(\chi_{305760}(25811,\cdot)\) \(\chi_{305760}(27731,\cdot)\) \(\chi_{305760}(30011,\cdot)\) \(\chi_{305760}(43691,\cdot)\) \(\chi_{305760}(47651,\cdot)\) \(\chi_{305760}(49571,\cdot)\) \(\chi_{305760}(51851,\cdot)\) \(\chi_{305760}(69491,\cdot)\) \(\chi_{305760}(73691,\cdot)\) \(\chi_{305760}(87371,\cdot)\) \(\chi_{305760}(91331,\cdot)\) \(\chi_{305760}(93251,\cdot)\) \(\chi_{305760}(109211,\cdot)\) \(\chi_{305760}(115091,\cdot)\) \(\chi_{305760}(117371,\cdot)\) \(\chi_{305760}(131051,\cdot)\) \(\chi_{305760}(135011,\cdot)\) \(\chi_{305760}(136931,\cdot)\) \(\chi_{305760}(139211,\cdot)\) \(\chi_{305760}(152891,\cdot)\) \(\chi_{305760}(156851,\cdot)\) \(\chi_{305760}(158771,\cdot)\) \(\chi_{305760}(161051,\cdot)\) \(\chi_{305760}(174731,\cdot)\) \(\chi_{305760}(178691,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{168})$
Fixed field: Number field defined by a degree 168 polynomial (not computed)

Values on generators

\((95551,114661,101921,183457,18721,211681)\) → \((-1,e\left(\frac{7}{8}\right),-1,1,e\left(\frac{1}{21}\right),e\left(\frac{5}{12}\right))\)

First values

\(a\) \(-1\)\(1\)\(11\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)\(47\)
\( \chi_{ 305760 }(69491, a) \) \(-1\)\(1\)\(e\left(\frac{11}{56}\right)\)\(e\left(\frac{1}{42}\right)\)\(e\left(\frac{3}{8}\right)\)\(e\left(\frac{19}{84}\right)\)\(e\left(\frac{109}{168}\right)\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{53}{168}\right)\)\(e\left(\frac{37}{42}\right)\)\(e\left(\frac{167}{168}\right)\)\(e\left(\frac{83}{84}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 305760 }(69491,a) \;\) at \(\;a = \) e.g. 2