Properties

Label 305760.270457
Modulus $305760$
Conductor $50960$
Order $84$
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(305760, base_ring=CyclotomicField(84)) M = H._module chi = DirichletCharacter(H, M([0,21,0,21,34,63]))
 
Copy content pari:[g,chi] = znchar(Mod(270457,305760))
 

Basic properties

Modulus: \(305760\)
Conductor: \(50960\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(84\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{50960}(2917,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 305760.ehu

\(\chi_{305760}(73,\cdot)\) \(\chi_{305760}(8377,\cdot)\) \(\chi_{305760}(18793,\cdot)\) \(\chi_{305760}(33337,\cdot)\) \(\chi_{305760}(43753,\cdot)\) \(\chi_{305760}(62473,\cdot)\) \(\chi_{305760}(77017,\cdot)\) \(\chi_{305760}(87433,\cdot)\) \(\chi_{305760}(95737,\cdot)\) \(\chi_{305760}(120697,\cdot)\) \(\chi_{305760}(131113,\cdot)\) \(\chi_{305760}(139417,\cdot)\) \(\chi_{305760}(149833,\cdot)\) \(\chi_{305760}(174793,\cdot)\) \(\chi_{305760}(183097,\cdot)\) \(\chi_{305760}(193513,\cdot)\) \(\chi_{305760}(208057,\cdot)\) \(\chi_{305760}(226777,\cdot)\) \(\chi_{305760}(237193,\cdot)\) \(\chi_{305760}(251737,\cdot)\) \(\chi_{305760}(262153,\cdot)\) \(\chi_{305760}(270457,\cdot)\) \(\chi_{305760}(280873,\cdot)\) \(\chi_{305760}(295417,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{84})$
Fixed field: Number field defined by a degree 84 polynomial

Values on generators

\((95551,114661,101921,183457,18721,211681)\) → \((1,i,1,i,e\left(\frac{17}{42}\right),-i)\)

First values

\(a\) \(-1\)\(1\)\(11\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)\(47\)
\( \chi_{ 305760 }(270457, a) \) \(-1\)\(1\)\(e\left(\frac{29}{42}\right)\)\(e\left(\frac{73}{84}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{11}{84}\right)\)\(e\left(\frac{15}{28}\right)\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{59}{84}\right)\)\(e\left(\frac{9}{28}\right)\)\(e\left(\frac{13}{14}\right)\)\(e\left(\frac{11}{21}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 305760 }(270457,a) \;\) at \(\;a = \) e.g. 2