Properties

Label 305760.149
Modulus $305760$
Conductor $305760$
Order $168$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(305760, base_ring=CyclotomicField(168)) M = H._module chi = DirichletCharacter(H, M([0,105,84,84,104,70]))
 
Copy content pari:[g,chi] = znchar(Mod(149,305760))
 

Basic properties

Modulus: \(305760\)
Conductor: \(305760\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(168\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 305760.gbb

\(\chi_{305760}(149,\cdot)\) \(\chi_{305760}(2069,\cdot)\) \(\chi_{305760}(4349,\cdot)\) \(\chi_{305760}(18029,\cdot)\) \(\chi_{305760}(21989,\cdot)\) \(\chi_{305760}(23909,\cdot)\) \(\chi_{305760}(26189,\cdot)\) \(\chi_{305760}(39869,\cdot)\) \(\chi_{305760}(43829,\cdot)\) \(\chi_{305760}(45749,\cdot)\) \(\chi_{305760}(48029,\cdot)\) \(\chi_{305760}(65669,\cdot)\) \(\chi_{305760}(69869,\cdot)\) \(\chi_{305760}(83549,\cdot)\) \(\chi_{305760}(87509,\cdot)\) \(\chi_{305760}(89429,\cdot)\) \(\chi_{305760}(105389,\cdot)\) \(\chi_{305760}(111269,\cdot)\) \(\chi_{305760}(113549,\cdot)\) \(\chi_{305760}(127229,\cdot)\) \(\chi_{305760}(131189,\cdot)\) \(\chi_{305760}(133109,\cdot)\) \(\chi_{305760}(135389,\cdot)\) \(\chi_{305760}(149069,\cdot)\) \(\chi_{305760}(153029,\cdot)\) \(\chi_{305760}(154949,\cdot)\) \(\chi_{305760}(157229,\cdot)\) \(\chi_{305760}(170909,\cdot)\) \(\chi_{305760}(174869,\cdot)\) \(\chi_{305760}(176789,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{168})$
Fixed field: Number field defined by a degree 168 polynomial (not computed)

Values on generators

\((95551,114661,101921,183457,18721,211681)\) → \((1,e\left(\frac{5}{8}\right),-1,-1,e\left(\frac{13}{21}\right),e\left(\frac{5}{12}\right))\)

First values

\(a\) \(-1\)\(1\)\(11\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)\(47\)
\( \chi_{ 305760 }(149, a) \) \(1\)\(1\)\(e\left(\frac{17}{56}\right)\)\(e\left(\frac{17}{21}\right)\)\(e\left(\frac{1}{8}\right)\)\(e\left(\frac{37}{84}\right)\)\(e\left(\frac{31}{168}\right)\)\(e\left(\frac{1}{12}\right)\)\(e\left(\frac{143}{168}\right)\)\(e\left(\frac{20}{21}\right)\)\(e\left(\frac{29}{168}\right)\)\(e\left(\frac{71}{84}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 305760 }(149,a) \;\) at \(\;a = \) e.g. 2