Properties

Label 3042.7
Modulus $3042$
Conductor $1521$
Order $156$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3042, base_ring=CyclotomicField(156)) M = H._module chi = DirichletCharacter(H, M([104,107]))
 
Copy content pari:[g,chi] = znchar(Mod(7,3042))
 

Basic properties

Modulus: \(3042\)
Conductor: \(1521\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(156\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{1521}(7,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 3042.cb

\(\chi_{3042}(7,\cdot)\) \(\chi_{3042}(67,\cdot)\) \(\chi_{3042}(97,\cdot)\) \(\chi_{3042}(193,\cdot)\) \(\chi_{3042}(241,\cdot)\) \(\chi_{3042}(301,\cdot)\) \(\chi_{3042}(331,\cdot)\) \(\chi_{3042}(475,\cdot)\) \(\chi_{3042}(535,\cdot)\) \(\chi_{3042}(565,\cdot)\) \(\chi_{3042}(661,\cdot)\) \(\chi_{3042}(709,\cdot)\) \(\chi_{3042}(769,\cdot)\) \(\chi_{3042}(799,\cdot)\) \(\chi_{3042}(895,\cdot)\) \(\chi_{3042}(943,\cdot)\) \(\chi_{3042}(1003,\cdot)\) \(\chi_{3042}(1129,\cdot)\) \(\chi_{3042}(1177,\cdot)\) \(\chi_{3042}(1237,\cdot)\) \(\chi_{3042}(1267,\cdot)\) \(\chi_{3042}(1363,\cdot)\) \(\chi_{3042}(1411,\cdot)\) \(\chi_{3042}(1471,\cdot)\) \(\chi_{3042}(1501,\cdot)\) \(\chi_{3042}(1597,\cdot)\) \(\chi_{3042}(1645,\cdot)\) \(\chi_{3042}(1705,\cdot)\) \(\chi_{3042}(1735,\cdot)\) \(\chi_{3042}(1831,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{156})$
Fixed field: Number field defined by a degree 156 polynomial (not computed)

Values on generators

\((677,847)\) → \((e\left(\frac{2}{3}\right),e\left(\frac{107}{156}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(35\)
\( \chi_{ 3042 }(7, a) \) \(-1\)\(1\)\(e\left(\frac{79}{156}\right)\)\(e\left(\frac{3}{52}\right)\)\(e\left(\frac{49}{156}\right)\)\(e\left(\frac{11}{78}\right)\)\(e\left(\frac{7}{12}\right)\)\(-1\)\(e\left(\frac{1}{78}\right)\)\(e\left(\frac{4}{39}\right)\)\(e\left(\frac{115}{156}\right)\)\(e\left(\frac{22}{39}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 3042 }(7,a) \;\) at \(\;a = \) e.g. 2