Properties

Label 3042.41
Modulus $3042$
Conductor $1521$
Order $156$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3042, base_ring=CyclotomicField(156)) M = H._module chi = DirichletCharacter(H, M([130,85]))
 
Copy content pari:[g,chi] = znchar(Mod(41,3042))
 

Basic properties

Modulus: \(3042\)
Conductor: \(1521\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(156\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{1521}(41,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 3042.cg

\(\chi_{3042}(41,\cdot)\) \(\chi_{3042}(137,\cdot)\) \(\chi_{3042}(167,\cdot)\) \(\chi_{3042}(227,\cdot)\) \(\chi_{3042}(275,\cdot)\) \(\chi_{3042}(371,\cdot)\) \(\chi_{3042}(401,\cdot)\) \(\chi_{3042}(461,\cdot)\) \(\chi_{3042}(509,\cdot)\) \(\chi_{3042}(605,\cdot)\) \(\chi_{3042}(635,\cdot)\) \(\chi_{3042}(743,\cdot)\) \(\chi_{3042}(839,\cdot)\) \(\chi_{3042}(869,\cdot)\) \(\chi_{3042}(929,\cdot)\) \(\chi_{3042}(977,\cdot)\) \(\chi_{3042}(1073,\cdot)\) \(\chi_{3042}(1163,\cdot)\) \(\chi_{3042}(1211,\cdot)\) \(\chi_{3042}(1307,\cdot)\) \(\chi_{3042}(1337,\cdot)\) \(\chi_{3042}(1397,\cdot)\) \(\chi_{3042}(1445,\cdot)\) \(\chi_{3042}(1541,\cdot)\) \(\chi_{3042}(1571,\cdot)\) \(\chi_{3042}(1631,\cdot)\) \(\chi_{3042}(1679,\cdot)\) \(\chi_{3042}(1775,\cdot)\) \(\chi_{3042}(1805,\cdot)\) \(\chi_{3042}(1865,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{156})$
Fixed field: Number field defined by a degree 156 polynomial (not computed)

Values on generators

\((677,847)\) → \((e\left(\frac{5}{6}\right),e\left(\frac{85}{156}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(35\)
\( \chi_{ 3042 }(41, a) \) \(1\)\(1\)\(e\left(\frac{11}{156}\right)\)\(e\left(\frac{33}{52}\right)\)\(e\left(\frac{149}{156}\right)\)\(e\left(\frac{2}{39}\right)\)\(e\left(\frac{5}{12}\right)\)\(1\)\(e\left(\frac{11}{78}\right)\)\(e\left(\frac{49}{78}\right)\)\(e\left(\frac{17}{156}\right)\)\(e\left(\frac{55}{78}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 3042 }(41,a) \;\) at \(\;a = \) e.g. 2