Properties

Label 3042.19
Modulus $3042$
Conductor $13$
Order $12$
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3042, base_ring=CyclotomicField(12)) M = H._module chi = DirichletCharacter(H, M([0,5]))
 
Copy content pari:[g,chi] = znchar(Mod(19,3042))
 

Basic properties

Modulus: \(3042\)
Conductor: \(13\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(12\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{13}(6,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 3042.bb

\(\chi_{3042}(19,\cdot)\) \(\chi_{3042}(1333,\cdot)\) \(\chi_{3042}(1441,\cdot)\) \(\chi_{3042}(2953,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{12})\)
Fixed field: \(\Q(\zeta_{13})\)

Values on generators

\((677,847)\) → \((1,e\left(\frac{5}{12}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(35\)
\( \chi_{ 3042 }(19, a) \) \(-1\)\(1\)\(-i\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{11}{12}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{1}{12}\right)\)\(e\left(\frac{1}{6}\right)\)\(-1\)\(e\left(\frac{2}{3}\right)\)\(-i\)\(e\left(\frac{1}{3}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 3042 }(19,a) \;\) at \(\;a = \) e.g. 2