Properties

Label 30345.jz
Modulus $30345$
Conductor $10115$
Order $408$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(30345, base_ring=CyclotomicField(408)) M = H._module chi = DirichletCharacter(H, M([0,306,68,399])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(178,30345)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(30345\)
Conductor: \(10115\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(408\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 10115.ey
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{408})$
Fixed field: Number field defined by a degree 408 polynomial (not computed)

First 31 of 128 characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(8\) \(11\) \(13\) \(16\) \(19\) \(22\) \(23\) \(26\)
\(\chi_{30345}(178,\cdot)\) \(1\) \(1\) \(e\left(\frac{91}{102}\right)\) \(e\left(\frac{40}{51}\right)\) \(e\left(\frac{23}{34}\right)\) \(e\left(\frac{65}{408}\right)\) \(e\left(\frac{29}{68}\right)\) \(e\left(\frac{29}{51}\right)\) \(e\left(\frac{5}{204}\right)\) \(e\left(\frac{7}{136}\right)\) \(e\left(\frac{271}{408}\right)\) \(e\left(\frac{65}{204}\right)\)
\(\chi_{30345}(682,\cdot)\) \(1\) \(1\) \(e\left(\frac{67}{102}\right)\) \(e\left(\frac{16}{51}\right)\) \(e\left(\frac{33}{34}\right)\) \(e\left(\frac{179}{408}\right)\) \(e\left(\frac{15}{68}\right)\) \(e\left(\frac{32}{51}\right)\) \(e\left(\frac{155}{204}\right)\) \(e\left(\frac{13}{136}\right)\) \(e\left(\frac{37}{408}\right)\) \(e\left(\frac{179}{204}\right)\)
\(\chi_{30345}(808,\cdot)\) \(1\) \(1\) \(e\left(\frac{55}{102}\right)\) \(e\left(\frac{4}{51}\right)\) \(e\left(\frac{21}{34}\right)\) \(e\left(\frac{389}{408}\right)\) \(e\left(\frac{25}{68}\right)\) \(e\left(\frac{8}{51}\right)\) \(e\left(\frac{77}{204}\right)\) \(e\left(\frac{67}{136}\right)\) \(e\left(\frac{379}{408}\right)\) \(e\left(\frac{185}{204}\right)\)
\(\chi_{30345}(943,\cdot)\) \(1\) \(1\) \(e\left(\frac{65}{102}\right)\) \(e\left(\frac{14}{51}\right)\) \(e\left(\frac{31}{34}\right)\) \(e\left(\frac{265}{408}\right)\) \(e\left(\frac{45}{68}\right)\) \(e\left(\frac{28}{51}\right)\) \(e\left(\frac{193}{204}\right)\) \(e\left(\frac{39}{136}\right)\) \(e\left(\frac{383}{408}\right)\) \(e\left(\frac{61}{204}\right)\)
\(\chi_{30345}(1447,\cdot)\) \(1\) \(1\) \(e\left(\frac{65}{102}\right)\) \(e\left(\frac{14}{51}\right)\) \(e\left(\frac{31}{34}\right)\) \(e\left(\frac{163}{408}\right)\) \(e\left(\frac{11}{68}\right)\) \(e\left(\frac{28}{51}\right)\) \(e\left(\frac{91}{204}\right)\) \(e\left(\frac{5}{136}\right)\) \(e\left(\frac{77}{408}\right)\) \(e\left(\frac{163}{204}\right)\)
\(\chi_{30345}(1573,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{102}\right)\) \(e\left(\frac{47}{51}\right)\) \(e\left(\frac{13}{34}\right)\) \(e\left(\frac{325}{408}\right)\) \(e\left(\frac{9}{68}\right)\) \(e\left(\frac{43}{51}\right)\) \(e\left(\frac{25}{204}\right)\) \(e\left(\frac{35}{136}\right)\) \(e\left(\frac{131}{408}\right)\) \(e\left(\frac{121}{204}\right)\)
\(\chi_{30345}(1732,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{102}\right)\) \(e\left(\frac{31}{51}\right)\) \(e\left(\frac{31}{34}\right)\) \(e\left(\frac{95}{408}\right)\) \(e\left(\frac{11}{68}\right)\) \(e\left(\frac{11}{51}\right)\) \(e\left(\frac{23}{204}\right)\) \(e\left(\frac{73}{136}\right)\) \(e\left(\frac{145}{408}\right)\) \(e\left(\frac{95}{204}\right)\)
\(\chi_{30345}(1963,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{102}\right)\) \(e\left(\frac{19}{51}\right)\) \(e\left(\frac{19}{34}\right)\) \(e\left(\frac{305}{408}\right)\) \(e\left(\frac{21}{68}\right)\) \(e\left(\frac{38}{51}\right)\) \(e\left(\frac{149}{204}\right)\) \(e\left(\frac{127}{136}\right)\) \(e\left(\frac{79}{408}\right)\) \(e\left(\frac{101}{204}\right)\)
\(\chi_{30345}(2497,\cdot)\) \(1\) \(1\) \(e\left(\frac{101}{102}\right)\) \(e\left(\frac{50}{51}\right)\) \(e\left(\frac{33}{34}\right)\) \(e\left(\frac{247}{408}\right)\) \(e\left(\frac{15}{68}\right)\) \(e\left(\frac{49}{51}\right)\) \(e\left(\frac{19}{204}\right)\) \(e\left(\frac{81}{136}\right)\) \(e\left(\frac{377}{408}\right)\) \(e\left(\frac{43}{204}\right)\)
\(\chi_{30345}(2593,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{102}\right)\) \(e\left(\frac{25}{51}\right)\) \(e\left(\frac{25}{34}\right)\) \(e\left(\frac{149}{408}\right)\) \(e\left(\frac{33}{68}\right)\) \(e\left(\frac{50}{51}\right)\) \(e\left(\frac{137}{204}\right)\) \(e\left(\frac{83}{136}\right)\) \(e\left(\frac{163}{408}\right)\) \(e\left(\frac{149}{204}\right)\)
\(\chi_{30345}(2728,\cdot)\) \(1\) \(1\) \(e\left(\frac{95}{102}\right)\) \(e\left(\frac{44}{51}\right)\) \(e\left(\frac{27}{34}\right)\) \(e\left(\frac{97}{408}\right)\) \(e\left(\frac{37}{68}\right)\) \(e\left(\frac{37}{51}\right)\) \(e\left(\frac{133}{204}\right)\) \(e\left(\frac{23}{136}\right)\) \(e\left(\frac{191}{408}\right)\) \(e\left(\frac{97}{204}\right)\)
\(\chi_{30345}(3232,\cdot)\) \(1\) \(1\) \(e\left(\frac{83}{102}\right)\) \(e\left(\frac{32}{51}\right)\) \(e\left(\frac{15}{34}\right)\) \(e\left(\frac{307}{408}\right)\) \(e\left(\frac{47}{68}\right)\) \(e\left(\frac{13}{51}\right)\) \(e\left(\frac{55}{204}\right)\) \(e\left(\frac{77}{136}\right)\) \(e\left(\frac{125}{408}\right)\) \(e\left(\frac{103}{204}\right)\)
\(\chi_{30345}(3517,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{102}\right)\) \(e\left(\frac{13}{51}\right)\) \(e\left(\frac{13}{34}\right)\) \(e\left(\frac{359}{408}\right)\) \(e\left(\frac{43}{68}\right)\) \(e\left(\frac{26}{51}\right)\) \(e\left(\frac{59}{204}\right)\) \(e\left(\frac{1}{136}\right)\) \(e\left(\frac{97}{408}\right)\) \(e\left(\frac{155}{204}\right)\)
\(\chi_{30345}(3748,\cdot)\) \(1\) \(1\) \(e\left(\frac{49}{102}\right)\) \(e\left(\frac{49}{51}\right)\) \(e\left(\frac{15}{34}\right)\) \(e\left(\frac{137}{408}\right)\) \(e\left(\frac{13}{68}\right)\) \(e\left(\frac{47}{51}\right)\) \(e\left(\frac{89}{204}\right)\) \(e\left(\frac{111}{136}\right)\) \(e\left(\frac{295}{408}\right)\) \(e\left(\frac{137}{204}\right)\)
\(\chi_{30345}(4252,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{102}\right)\) \(e\left(\frac{1}{51}\right)\) \(e\left(\frac{1}{34}\right)\) \(e\left(\frac{59}{408}\right)\) \(e\left(\frac{19}{68}\right)\) \(e\left(\frac{2}{51}\right)\) \(e\left(\frac{83}{204}\right)\) \(e\left(\frac{21}{136}\right)\) \(e\left(\frac{133}{408}\right)\) \(e\left(\frac{59}{204}\right)\)
\(\chi_{30345}(4282,\cdot)\) \(1\) \(1\) \(e\left(\frac{83}{102}\right)\) \(e\left(\frac{32}{51}\right)\) \(e\left(\frac{15}{34}\right)\) \(e\left(\frac{103}{408}\right)\) \(e\left(\frac{47}{68}\right)\) \(e\left(\frac{13}{51}\right)\) \(e\left(\frac{55}{204}\right)\) \(e\left(\frac{9}{136}\right)\) \(e\left(\frac{329}{408}\right)\) \(e\left(\frac{103}{204}\right)\)
\(\chi_{30345}(4378,\cdot)\) \(1\) \(1\) \(e\left(\frac{97}{102}\right)\) \(e\left(\frac{46}{51}\right)\) \(e\left(\frac{29}{34}\right)\) \(e\left(\frac{317}{408}\right)\) \(e\left(\frac{41}{68}\right)\) \(e\left(\frac{41}{51}\right)\) \(e\left(\frac{197}{204}\right)\) \(e\left(\frac{99}{136}\right)\) \(e\left(\frac{355}{408}\right)\) \(e\left(\frac{113}{204}\right)\)
\(\chi_{30345}(4513,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{102}\right)\) \(e\left(\frac{23}{51}\right)\) \(e\left(\frac{23}{34}\right)\) \(e\left(\frac{337}{408}\right)\) \(e\left(\frac{29}{68}\right)\) \(e\left(\frac{46}{51}\right)\) \(e\left(\frac{73}{204}\right)\) \(e\left(\frac{7}{136}\right)\) \(e\left(\frac{407}{408}\right)\) \(e\left(\frac{133}{204}\right)\)
\(\chi_{30345}(5017,\cdot)\) \(1\) \(1\) \(e\left(\frac{101}{102}\right)\) \(e\left(\frac{50}{51}\right)\) \(e\left(\frac{33}{34}\right)\) \(e\left(\frac{43}{408}\right)\) \(e\left(\frac{15}{68}\right)\) \(e\left(\frac{49}{51}\right)\) \(e\left(\frac{19}{204}\right)\) \(e\left(\frac{13}{136}\right)\) \(e\left(\frac{173}{408}\right)\) \(e\left(\frac{43}{204}\right)\)
\(\chi_{30345}(5143,\cdot)\) \(1\) \(1\) \(e\left(\frac{89}{102}\right)\) \(e\left(\frac{38}{51}\right)\) \(e\left(\frac{21}{34}\right)\) \(e\left(\frac{253}{408}\right)\) \(e\left(\frac{25}{68}\right)\) \(e\left(\frac{25}{51}\right)\) \(e\left(\frac{145}{204}\right)\) \(e\left(\frac{67}{136}\right)\) \(e\left(\frac{107}{408}\right)\) \(e\left(\frac{49}{204}\right)\)
\(\chi_{30345}(5302,\cdot)\) \(1\) \(1\) \(e\left(\frac{97}{102}\right)\) \(e\left(\frac{46}{51}\right)\) \(e\left(\frac{29}{34}\right)\) \(e\left(\frac{215}{408}\right)\) \(e\left(\frac{7}{68}\right)\) \(e\left(\frac{41}{51}\right)\) \(e\left(\frac{95}{204}\right)\) \(e\left(\frac{65}{136}\right)\) \(e\left(\frac{49}{408}\right)\) \(e\left(\frac{11}{204}\right)\)
\(\chi_{30345}(5533,\cdot)\) \(1\) \(1\) \(e\left(\frac{79}{102}\right)\) \(e\left(\frac{28}{51}\right)\) \(e\left(\frac{11}{34}\right)\) \(e\left(\frac{377}{408}\right)\) \(e\left(\frac{5}{68}\right)\) \(e\left(\frac{5}{51}\right)\) \(e\left(\frac{29}{204}\right)\) \(e\left(\frac{95}{136}\right)\) \(e\left(\frac{103}{408}\right)\) \(e\left(\frac{173}{204}\right)\)
\(\chi_{30345}(6037,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{102}\right)\) \(e\left(\frac{19}{51}\right)\) \(e\left(\frac{19}{34}\right)\) \(e\left(\frac{203}{408}\right)\) \(e\left(\frac{55}{68}\right)\) \(e\left(\frac{38}{51}\right)\) \(e\left(\frac{47}{204}\right)\) \(e\left(\frac{93}{136}\right)\) \(e\left(\frac{181}{408}\right)\) \(e\left(\frac{203}{204}\right)\)
\(\chi_{30345}(6067,\cdot)\) \(1\) \(1\) \(e\left(\frac{65}{102}\right)\) \(e\left(\frac{14}{51}\right)\) \(e\left(\frac{31}{34}\right)\) \(e\left(\frac{367}{408}\right)\) \(e\left(\frac{11}{68}\right)\) \(e\left(\frac{28}{51}\right)\) \(e\left(\frac{91}{204}\right)\) \(e\left(\frac{73}{136}\right)\) \(e\left(\frac{281}{408}\right)\) \(e\left(\frac{163}{204}\right)\)
\(\chi_{30345}(6163,\cdot)\) \(1\) \(1\) \(e\left(\frac{67}{102}\right)\) \(e\left(\frac{16}{51}\right)\) \(e\left(\frac{33}{34}\right)\) \(e\left(\frac{77}{408}\right)\) \(e\left(\frac{49}{68}\right)\) \(e\left(\frac{32}{51}\right)\) \(e\left(\frac{53}{204}\right)\) \(e\left(\frac{115}{136}\right)\) \(e\left(\frac{139}{408}\right)\) \(e\left(\frac{77}{204}\right)\)
\(\chi_{30345}(6298,\cdot)\) \(1\) \(1\) \(e\left(\frac{53}{102}\right)\) \(e\left(\frac{2}{51}\right)\) \(e\left(\frac{19}{34}\right)\) \(e\left(\frac{169}{408}\right)\) \(e\left(\frac{21}{68}\right)\) \(e\left(\frac{4}{51}\right)\) \(e\left(\frac{13}{204}\right)\) \(e\left(\frac{127}{136}\right)\) \(e\left(\frac{215}{408}\right)\) \(e\left(\frac{169}{204}\right)\)
\(\chi_{30345}(6928,\cdot)\) \(1\) \(1\) \(e\left(\frac{59}{102}\right)\) \(e\left(\frac{8}{51}\right)\) \(e\left(\frac{25}{34}\right)\) \(e\left(\frac{13}{408}\right)\) \(e\left(\frac{33}{68}\right)\) \(e\left(\frac{16}{51}\right)\) \(e\left(\frac{1}{204}\right)\) \(e\left(\frac{83}{136}\right)\) \(e\left(\frac{299}{408}\right)\) \(e\left(\frac{13}{204}\right)\)
\(\chi_{30345}(7087,\cdot)\) \(1\) \(1\) \(e\left(\frac{79}{102}\right)\) \(e\left(\frac{28}{51}\right)\) \(e\left(\frac{11}{34}\right)\) \(e\left(\frac{71}{408}\right)\) \(e\left(\frac{39}{68}\right)\) \(e\left(\frac{5}{51}\right)\) \(e\left(\frac{131}{204}\right)\) \(e\left(\frac{129}{136}\right)\) \(e\left(\frac{1}{408}\right)\) \(e\left(\frac{71}{204}\right)\)
\(\chi_{30345}(7318,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{102}\right)\) \(e\left(\frac{7}{51}\right)\) \(e\left(\frac{7}{34}\right)\) \(e\left(\frac{209}{408}\right)\) \(e\left(\frac{65}{68}\right)\) \(e\left(\frac{14}{51}\right)\) \(e\left(\frac{173}{204}\right)\) \(e\left(\frac{79}{136}\right)\) \(e\left(\frac{319}{408}\right)\) \(e\left(\frac{5}{204}\right)\)
\(\chi_{30345}(7822,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{102}\right)\) \(e\left(\frac{37}{51}\right)\) \(e\left(\frac{3}{34}\right)\) \(e\left(\frac{347}{408}\right)\) \(e\left(\frac{23}{68}\right)\) \(e\left(\frac{23}{51}\right)\) \(e\left(\frac{11}{204}\right)\) \(e\left(\frac{29}{136}\right)\) \(e\left(\frac{229}{408}\right)\) \(e\left(\frac{143}{204}\right)\)
\(\chi_{30345}(7852,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{102}\right)\) \(e\left(\frac{47}{51}\right)\) \(e\left(\frac{13}{34}\right)\) \(e\left(\frac{223}{408}\right)\) \(e\left(\frac{43}{68}\right)\) \(e\left(\frac{43}{51}\right)\) \(e\left(\frac{127}{204}\right)\) \(e\left(\frac{1}{136}\right)\) \(e\left(\frac{233}{408}\right)\) \(e\left(\frac{19}{204}\right)\)