Properties

Label 30345.im
Modulus $30345$
Conductor $30345$
Order $204$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(30345, base_ring=CyclotomicField(204)) M = H._module chi = DirichletCharacter(H, M([102,51,136,132])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(137,30345)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(30345\)
Conductor: \(30345\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(204\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{204})$
Fixed field: Number field defined by a degree 204 polynomial (not computed)

First 31 of 64 characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(8\) \(11\) \(13\) \(16\) \(19\) \(22\) \(23\) \(26\)
\(\chi_{30345}(137,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{204}\right)\) \(e\left(\frac{5}{102}\right)\) \(e\left(\frac{5}{68}\right)\) \(e\left(\frac{5}{102}\right)\) \(e\left(\frac{39}{68}\right)\) \(e\left(\frac{5}{51}\right)\) \(e\left(\frac{91}{102}\right)\) \(e\left(\frac{5}{68}\right)\) \(e\left(\frac{179}{204}\right)\) \(e\left(\frac{61}{102}\right)\)
\(\chi_{30345}(443,\cdot)\) \(1\) \(1\) \(e\left(\frac{199}{204}\right)\) \(e\left(\frac{97}{102}\right)\) \(e\left(\frac{63}{68}\right)\) \(e\left(\frac{97}{102}\right)\) \(e\left(\frac{29}{68}\right)\) \(e\left(\frac{46}{51}\right)\) \(e\left(\frac{11}{102}\right)\) \(e\left(\frac{63}{68}\right)\) \(e\left(\frac{25}{204}\right)\) \(e\left(\frac{41}{102}\right)\)
\(\chi_{30345}(1208,\cdot)\) \(1\) \(1\) \(e\left(\frac{191}{204}\right)\) \(e\left(\frac{89}{102}\right)\) \(e\left(\frac{55}{68}\right)\) \(e\left(\frac{89}{102}\right)\) \(e\left(\frac{21}{68}\right)\) \(e\left(\frac{38}{51}\right)\) \(e\left(\frac{49}{102}\right)\) \(e\left(\frac{55}{68}\right)\) \(e\left(\frac{65}{204}\right)\) \(e\left(\frac{25}{102}\right)\)
\(\chi_{30345}(1922,\cdot)\) \(1\) \(1\) \(e\left(\frac{77}{204}\right)\) \(e\left(\frac{77}{102}\right)\) \(e\left(\frac{9}{68}\right)\) \(e\left(\frac{77}{102}\right)\) \(e\left(\frac{43}{68}\right)\) \(e\left(\frac{26}{51}\right)\) \(e\left(\frac{55}{102}\right)\) \(e\left(\frac{9}{68}\right)\) \(e\left(\frac{23}{204}\right)\) \(e\left(\frac{1}{102}\right)\)
\(\chi_{30345}(2228,\cdot)\) \(1\) \(1\) \(e\left(\frac{67}{204}\right)\) \(e\left(\frac{67}{102}\right)\) \(e\left(\frac{67}{68}\right)\) \(e\left(\frac{67}{102}\right)\) \(e\left(\frac{33}{68}\right)\) \(e\left(\frac{16}{51}\right)\) \(e\left(\frac{77}{102}\right)\) \(e\left(\frac{67}{68}\right)\) \(e\left(\frac{73}{204}\right)\) \(e\left(\frac{83}{102}\right)\)
\(\chi_{30345}(2942,\cdot)\) \(1\) \(1\) \(e\left(\frac{157}{204}\right)\) \(e\left(\frac{55}{102}\right)\) \(e\left(\frac{21}{68}\right)\) \(e\left(\frac{55}{102}\right)\) \(e\left(\frac{55}{68}\right)\) \(e\left(\frac{4}{51}\right)\) \(e\left(\frac{83}{102}\right)\) \(e\left(\frac{21}{68}\right)\) \(e\left(\frac{31}{204}\right)\) \(e\left(\frac{59}{102}\right)\)
\(\chi_{30345}(2993,\cdot)\) \(1\) \(1\) \(e\left(\frac{59}{204}\right)\) \(e\left(\frac{59}{102}\right)\) \(e\left(\frac{59}{68}\right)\) \(e\left(\frac{59}{102}\right)\) \(e\left(\frac{25}{68}\right)\) \(e\left(\frac{8}{51}\right)\) \(e\left(\frac{13}{102}\right)\) \(e\left(\frac{59}{68}\right)\) \(e\left(\frac{113}{204}\right)\) \(e\left(\frac{67}{102}\right)\)
\(\chi_{30345}(3707,\cdot)\) \(1\) \(1\) \(e\left(\frac{149}{204}\right)\) \(e\left(\frac{47}{102}\right)\) \(e\left(\frac{13}{68}\right)\) \(e\left(\frac{47}{102}\right)\) \(e\left(\frac{47}{68}\right)\) \(e\left(\frac{47}{51}\right)\) \(e\left(\frac{19}{102}\right)\) \(e\left(\frac{13}{68}\right)\) \(e\left(\frac{71}{204}\right)\) \(e\left(\frac{43}{102}\right)\)
\(\chi_{30345}(4013,\cdot)\) \(1\) \(1\) \(e\left(\frac{139}{204}\right)\) \(e\left(\frac{37}{102}\right)\) \(e\left(\frac{3}{68}\right)\) \(e\left(\frac{37}{102}\right)\) \(e\left(\frac{37}{68}\right)\) \(e\left(\frac{37}{51}\right)\) \(e\left(\frac{41}{102}\right)\) \(e\left(\frac{3}{68}\right)\) \(e\left(\frac{121}{204}\right)\) \(e\left(\frac{23}{102}\right)\)
\(\chi_{30345}(4727,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{204}\right)\) \(e\left(\frac{25}{102}\right)\) \(e\left(\frac{25}{68}\right)\) \(e\left(\frac{25}{102}\right)\) \(e\left(\frac{59}{68}\right)\) \(e\left(\frac{25}{51}\right)\) \(e\left(\frac{47}{102}\right)\) \(e\left(\frac{25}{68}\right)\) \(e\left(\frac{79}{204}\right)\) \(e\left(\frac{101}{102}\right)\)
\(\chi_{30345}(4778,\cdot)\) \(1\) \(1\) \(e\left(\frac{131}{204}\right)\) \(e\left(\frac{29}{102}\right)\) \(e\left(\frac{63}{68}\right)\) \(e\left(\frac{29}{102}\right)\) \(e\left(\frac{29}{68}\right)\) \(e\left(\frac{29}{51}\right)\) \(e\left(\frac{79}{102}\right)\) \(e\left(\frac{63}{68}\right)\) \(e\left(\frac{161}{204}\right)\) \(e\left(\frac{7}{102}\right)\)
\(\chi_{30345}(5798,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{204}\right)\) \(e\left(\frac{7}{102}\right)\) \(e\left(\frac{7}{68}\right)\) \(e\left(\frac{7}{102}\right)\) \(e\left(\frac{41}{68}\right)\) \(e\left(\frac{7}{51}\right)\) \(e\left(\frac{5}{102}\right)\) \(e\left(\frac{7}{68}\right)\) \(e\left(\frac{169}{204}\right)\) \(e\left(\frac{65}{102}\right)\)
\(\chi_{30345}(6512,\cdot)\) \(1\) \(1\) \(e\left(\frac{97}{204}\right)\) \(e\left(\frac{97}{102}\right)\) \(e\left(\frac{29}{68}\right)\) \(e\left(\frac{97}{102}\right)\) \(e\left(\frac{63}{68}\right)\) \(e\left(\frac{46}{51}\right)\) \(e\left(\frac{11}{102}\right)\) \(e\left(\frac{29}{68}\right)\) \(e\left(\frac{127}{204}\right)\) \(e\left(\frac{41}{102}\right)\)
\(\chi_{30345}(6563,\cdot)\) \(1\) \(1\) \(e\left(\frac{203}{204}\right)\) \(e\left(\frac{101}{102}\right)\) \(e\left(\frac{67}{68}\right)\) \(e\left(\frac{101}{102}\right)\) \(e\left(\frac{33}{68}\right)\) \(e\left(\frac{50}{51}\right)\) \(e\left(\frac{43}{102}\right)\) \(e\left(\frac{67}{68}\right)\) \(e\left(\frac{5}{204}\right)\) \(e\left(\frac{49}{102}\right)\)
\(\chi_{30345}(7277,\cdot)\) \(1\) \(1\) \(e\left(\frac{89}{204}\right)\) \(e\left(\frac{89}{102}\right)\) \(e\left(\frac{21}{68}\right)\) \(e\left(\frac{89}{102}\right)\) \(e\left(\frac{55}{68}\right)\) \(e\left(\frac{38}{51}\right)\) \(e\left(\frac{49}{102}\right)\) \(e\left(\frac{21}{68}\right)\) \(e\left(\frac{167}{204}\right)\) \(e\left(\frac{25}{102}\right)\)
\(\chi_{30345}(7583,\cdot)\) \(1\) \(1\) \(e\left(\frac{79}{204}\right)\) \(e\left(\frac{79}{102}\right)\) \(e\left(\frac{11}{68}\right)\) \(e\left(\frac{79}{102}\right)\) \(e\left(\frac{45}{68}\right)\) \(e\left(\frac{28}{51}\right)\) \(e\left(\frac{71}{102}\right)\) \(e\left(\frac{11}{68}\right)\) \(e\left(\frac{13}{204}\right)\) \(e\left(\frac{5}{102}\right)\)
\(\chi_{30345}(8297,\cdot)\) \(1\) \(1\) \(e\left(\frac{169}{204}\right)\) \(e\left(\frac{67}{102}\right)\) \(e\left(\frac{33}{68}\right)\) \(e\left(\frac{67}{102}\right)\) \(e\left(\frac{67}{68}\right)\) \(e\left(\frac{16}{51}\right)\) \(e\left(\frac{77}{102}\right)\) \(e\left(\frac{33}{68}\right)\) \(e\left(\frac{175}{204}\right)\) \(e\left(\frac{83}{102}\right)\)
\(\chi_{30345}(8348,\cdot)\) \(1\) \(1\) \(e\left(\frac{71}{204}\right)\) \(e\left(\frac{71}{102}\right)\) \(e\left(\frac{3}{68}\right)\) \(e\left(\frac{71}{102}\right)\) \(e\left(\frac{37}{68}\right)\) \(e\left(\frac{20}{51}\right)\) \(e\left(\frac{7}{102}\right)\) \(e\left(\frac{3}{68}\right)\) \(e\left(\frac{53}{204}\right)\) \(e\left(\frac{91}{102}\right)\)
\(\chi_{30345}(9062,\cdot)\) \(1\) \(1\) \(e\left(\frac{161}{204}\right)\) \(e\left(\frac{59}{102}\right)\) \(e\left(\frac{25}{68}\right)\) \(e\left(\frac{59}{102}\right)\) \(e\left(\frac{59}{68}\right)\) \(e\left(\frac{8}{51}\right)\) \(e\left(\frac{13}{102}\right)\) \(e\left(\frac{25}{68}\right)\) \(e\left(\frac{11}{204}\right)\) \(e\left(\frac{67}{102}\right)\)
\(\chi_{30345}(9368,\cdot)\) \(1\) \(1\) \(e\left(\frac{151}{204}\right)\) \(e\left(\frac{49}{102}\right)\) \(e\left(\frac{15}{68}\right)\) \(e\left(\frac{49}{102}\right)\) \(e\left(\frac{49}{68}\right)\) \(e\left(\frac{49}{51}\right)\) \(e\left(\frac{35}{102}\right)\) \(e\left(\frac{15}{68}\right)\) \(e\left(\frac{61}{204}\right)\) \(e\left(\frac{47}{102}\right)\)
\(\chi_{30345}(10082,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{204}\right)\) \(e\left(\frac{37}{102}\right)\) \(e\left(\frac{37}{68}\right)\) \(e\left(\frac{37}{102}\right)\) \(e\left(\frac{3}{68}\right)\) \(e\left(\frac{37}{51}\right)\) \(e\left(\frac{41}{102}\right)\) \(e\left(\frac{37}{68}\right)\) \(e\left(\frac{19}{204}\right)\) \(e\left(\frac{23}{102}\right)\)
\(\chi_{30345}(10133,\cdot)\) \(1\) \(1\) \(e\left(\frac{143}{204}\right)\) \(e\left(\frac{41}{102}\right)\) \(e\left(\frac{7}{68}\right)\) \(e\left(\frac{41}{102}\right)\) \(e\left(\frac{41}{68}\right)\) \(e\left(\frac{41}{51}\right)\) \(e\left(\frac{73}{102}\right)\) \(e\left(\frac{7}{68}\right)\) \(e\left(\frac{101}{204}\right)\) \(e\left(\frac{31}{102}\right)\)
\(\chi_{30345}(10847,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{204}\right)\) \(e\left(\frac{29}{102}\right)\) \(e\left(\frac{29}{68}\right)\) \(e\left(\frac{29}{102}\right)\) \(e\left(\frac{63}{68}\right)\) \(e\left(\frac{29}{51}\right)\) \(e\left(\frac{79}{102}\right)\) \(e\left(\frac{29}{68}\right)\) \(e\left(\frac{59}{204}\right)\) \(e\left(\frac{7}{102}\right)\)
\(\chi_{30345}(11153,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{204}\right)\) \(e\left(\frac{19}{102}\right)\) \(e\left(\frac{19}{68}\right)\) \(e\left(\frac{19}{102}\right)\) \(e\left(\frac{53}{68}\right)\) \(e\left(\frac{19}{51}\right)\) \(e\left(\frac{101}{102}\right)\) \(e\left(\frac{19}{68}\right)\) \(e\left(\frac{109}{204}\right)\) \(e\left(\frac{89}{102}\right)\)
\(\chi_{30345}(11867,\cdot)\) \(1\) \(1\) \(e\left(\frac{109}{204}\right)\) \(e\left(\frac{7}{102}\right)\) \(e\left(\frac{41}{68}\right)\) \(e\left(\frac{7}{102}\right)\) \(e\left(\frac{7}{68}\right)\) \(e\left(\frac{7}{51}\right)\) \(e\left(\frac{5}{102}\right)\) \(e\left(\frac{41}{68}\right)\) \(e\left(\frac{67}{204}\right)\) \(e\left(\frac{65}{102}\right)\)
\(\chi_{30345}(11918,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{204}\right)\) \(e\left(\frac{11}{102}\right)\) \(e\left(\frac{11}{68}\right)\) \(e\left(\frac{11}{102}\right)\) \(e\left(\frac{45}{68}\right)\) \(e\left(\frac{11}{51}\right)\) \(e\left(\frac{37}{102}\right)\) \(e\left(\frac{11}{68}\right)\) \(e\left(\frac{149}{204}\right)\) \(e\left(\frac{73}{102}\right)\)
\(\chi_{30345}(12632,\cdot)\) \(1\) \(1\) \(e\left(\frac{101}{204}\right)\) \(e\left(\frac{101}{102}\right)\) \(e\left(\frac{33}{68}\right)\) \(e\left(\frac{101}{102}\right)\) \(e\left(\frac{67}{68}\right)\) \(e\left(\frac{50}{51}\right)\) \(e\left(\frac{43}{102}\right)\) \(e\left(\frac{33}{68}\right)\) \(e\left(\frac{107}{204}\right)\) \(e\left(\frac{49}{102}\right)\)
\(\chi_{30345}(12938,\cdot)\) \(1\) \(1\) \(e\left(\frac{91}{204}\right)\) \(e\left(\frac{91}{102}\right)\) \(e\left(\frac{23}{68}\right)\) \(e\left(\frac{91}{102}\right)\) \(e\left(\frac{57}{68}\right)\) \(e\left(\frac{40}{51}\right)\) \(e\left(\frac{65}{102}\right)\) \(e\left(\frac{23}{68}\right)\) \(e\left(\frac{157}{204}\right)\) \(e\left(\frac{29}{102}\right)\)
\(\chi_{30345}(13652,\cdot)\) \(1\) \(1\) \(e\left(\frac{181}{204}\right)\) \(e\left(\frac{79}{102}\right)\) \(e\left(\frac{45}{68}\right)\) \(e\left(\frac{79}{102}\right)\) \(e\left(\frac{11}{68}\right)\) \(e\left(\frac{28}{51}\right)\) \(e\left(\frac{71}{102}\right)\) \(e\left(\frac{45}{68}\right)\) \(e\left(\frac{115}{204}\right)\) \(e\left(\frac{5}{102}\right)\)
\(\chi_{30345}(13703,\cdot)\) \(1\) \(1\) \(e\left(\frac{83}{204}\right)\) \(e\left(\frac{83}{102}\right)\) \(e\left(\frac{15}{68}\right)\) \(e\left(\frac{83}{102}\right)\) \(e\left(\frac{49}{68}\right)\) \(e\left(\frac{32}{51}\right)\) \(e\left(\frac{1}{102}\right)\) \(e\left(\frac{15}{68}\right)\) \(e\left(\frac{197}{204}\right)\) \(e\left(\frac{13}{102}\right)\)
\(\chi_{30345}(14417,\cdot)\) \(1\) \(1\) \(e\left(\frac{173}{204}\right)\) \(e\left(\frac{71}{102}\right)\) \(e\left(\frac{37}{68}\right)\) \(e\left(\frac{71}{102}\right)\) \(e\left(\frac{3}{68}\right)\) \(e\left(\frac{20}{51}\right)\) \(e\left(\frac{7}{102}\right)\) \(e\left(\frac{37}{68}\right)\) \(e\left(\frac{155}{204}\right)\) \(e\left(\frac{91}{102}\right)\)