Properties

Label 30345.5771
Modulus $30345$
Conductor $6069$
Order $408$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(30345, base_ring=CyclotomicField(408)) M = H._module chi = DirichletCharacter(H, M([204,0,68,207]))
 
Copy content pari:[g,chi] = znchar(Mod(5771,30345))
 

Basic properties

Modulus: \(30345\)
Conductor: \(6069\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(408\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{6069}(5771,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 30345.kd

\(\chi_{30345}(26,\cdot)\) \(\chi_{30345}(206,\cdot)\) \(\chi_{30345}(236,\cdot)\) \(\chi_{30345}(416,\cdot)\) \(\chi_{30345}(971,\cdot)\) \(\chi_{30345}(1181,\cdot)\) \(\chi_{30345}(1256,\cdot)\) \(\chi_{30345}(1811,\cdot)\) \(\chi_{30345}(1991,\cdot)\) \(\chi_{30345}(2021,\cdot)\) \(\chi_{30345}(2201,\cdot)\) \(\chi_{30345}(2831,\cdot)\) \(\chi_{30345}(2966,\cdot)\) \(\chi_{30345}(3041,\cdot)\) \(\chi_{30345}(3596,\cdot)\) \(\chi_{30345}(3776,\cdot)\) \(\chi_{30345}(3806,\cdot)\) \(\chi_{30345}(3986,\cdot)\) \(\chi_{30345}(4541,\cdot)\) \(\chi_{30345}(4616,\cdot)\) \(\chi_{30345}(4751,\cdot)\) \(\chi_{30345}(4826,\cdot)\) \(\chi_{30345}(5561,\cdot)\) \(\chi_{30345}(5591,\cdot)\) \(\chi_{30345}(5771,\cdot)\) \(\chi_{30345}(6326,\cdot)\) \(\chi_{30345}(6401,\cdot)\) \(\chi_{30345}(6536,\cdot)\) \(\chi_{30345}(6611,\cdot)\) \(\chi_{30345}(7166,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{408})$
Fixed field: Number field defined by a degree 408 polynomial (not computed)

Values on generators

\((20231,24277,4336,28036)\) → \((-1,1,e\left(\frac{1}{6}\right),e\left(\frac{69}{136}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(8\)\(11\)\(13\)\(16\)\(19\)\(22\)\(23\)\(26\)
\( \chi_{ 30345 }(5771, a) \) \(1\)\(1\)\(e\left(\frac{47}{204}\right)\)\(e\left(\frac{47}{102}\right)\)\(e\left(\frac{47}{68}\right)\)\(e\left(\frac{341}{408}\right)\)\(e\left(\frac{16}{17}\right)\)\(e\left(\frac{47}{51}\right)\)\(e\left(\frac{191}{204}\right)\)\(e\left(\frac{9}{136}\right)\)\(e\left(\frac{397}{408}\right)\)\(e\left(\frac{35}{204}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 30345 }(5771,a) \;\) at \(\;a = \) e.g. 2