sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(30345, base_ring=CyclotomicField(8))
M = H._module
chi = DirichletCharacter(H, M([0,2,4,7]))
pari:[g,chi] = znchar(Mod(24142,30345))
\(\chi_{30345}(9358,\cdot)\)
\(\chi_{30345}(18052,\cdot)\)
\(\chi_{30345}(20698,\cdot)\)
\(\chi_{30345}(24142,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((20231,24277,4336,28036)\) → \((1,i,-1,e\left(\frac{7}{8}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(8\) | \(11\) | \(13\) | \(16\) | \(19\) | \(22\) | \(23\) | \(26\) |
| \( \chi_{ 30345 }(24142, a) \) |
\(1\) | \(1\) | \(-1\) | \(1\) | \(-1\) | \(e\left(\frac{1}{8}\right)\) | \(-i\) | \(1\) | \(i\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(i\) |
sage:chi.jacobi_sum(n)