Properties

Label 30345.21169
Modulus $30345$
Conductor $1445$
Order $68$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(30345, base_ring=CyclotomicField(68)) M = H._module chi = DirichletCharacter(H, M([0,34,0,7]))
 
Copy content pari:[g,chi] = znchar(Mod(21169,30345))
 

Basic properties

Modulus: \(30345\)
Conductor: \(1445\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(68\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{1445}(939,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 30345.gi

\(\chi_{30345}(64,\cdot)\) \(\chi_{30345}(1534,\cdot)\) \(\chi_{30345}(1849,\cdot)\) \(\chi_{30345}(3319,\cdot)\) \(\chi_{30345}(3634,\cdot)\) \(\chi_{30345}(5104,\cdot)\) \(\chi_{30345}(5419,\cdot)\) \(\chi_{30345}(6889,\cdot)\) \(\chi_{30345}(7204,\cdot)\) \(\chi_{30345}(8674,\cdot)\) \(\chi_{30345}(8989,\cdot)\) \(\chi_{30345}(10459,\cdot)\) \(\chi_{30345}(10774,\cdot)\) \(\chi_{30345}(12244,\cdot)\) \(\chi_{30345}(12559,\cdot)\) \(\chi_{30345}(14029,\cdot)\) \(\chi_{30345}(14344,\cdot)\) \(\chi_{30345}(15814,\cdot)\) \(\chi_{30345}(16129,\cdot)\) \(\chi_{30345}(17599,\cdot)\) \(\chi_{30345}(17914,\cdot)\) \(\chi_{30345}(19384,\cdot)\) \(\chi_{30345}(19699,\cdot)\) \(\chi_{30345}(21169,\cdot)\) \(\chi_{30345}(21484,\cdot)\) \(\chi_{30345}(22954,\cdot)\) \(\chi_{30345}(23269,\cdot)\) \(\chi_{30345}(24739,\cdot)\) \(\chi_{30345}(25054,\cdot)\) \(\chi_{30345}(26524,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{68})$
Fixed field: Number field defined by a degree 68 polynomial

Values on generators

\((20231,24277,4336,28036)\) → \((1,-1,1,e\left(\frac{7}{68}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(8\)\(11\)\(13\)\(16\)\(19\)\(22\)\(23\)\(26\)
\( \chi_{ 30345 }(21169, a) \) \(1\)\(1\)\(e\left(\frac{1}{17}\right)\)\(e\left(\frac{2}{17}\right)\)\(e\left(\frac{3}{17}\right)\)\(e\left(\frac{25}{68}\right)\)\(e\left(\frac{23}{34}\right)\)\(e\left(\frac{4}{17}\right)\)\(e\left(\frac{15}{34}\right)\)\(e\left(\frac{29}{68}\right)\)\(e\left(\frac{31}{68}\right)\)\(e\left(\frac{25}{34}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 30345 }(21169,a) \;\) at \(\;a = \) e.g. 2