Properties

Label 30345.1522
Modulus $30345$
Conductor $10115$
Order $408$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(30345, base_ring=CyclotomicField(408)) M = H._module chi = DirichletCharacter(H, M([0,102,68,267]))
 
Copy content pari:[g,chi] = znchar(Mod(1522,30345))
 

Basic properties

Modulus: \(30345\)
Conductor: \(10115\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(408\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{10115}(1522,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 30345.ki

\(\chi_{30345}(502,\cdot)\) \(\chi_{30345}(892,\cdot)\) \(\chi_{30345}(1018,\cdot)\) \(\chi_{30345}(1522,\cdot)\) \(\chi_{30345}(1657,\cdot)\) \(\chi_{30345}(1753,\cdot)\) \(\chi_{30345}(1783,\cdot)\) \(\chi_{30345}(2287,\cdot)\) \(\chi_{30345}(2518,\cdot)\) \(\chi_{30345}(2677,\cdot)\) \(\chi_{30345}(2803,\cdot)\) \(\chi_{30345}(3307,\cdot)\) \(\chi_{30345}(3442,\cdot)\) \(\chi_{30345}(3538,\cdot)\) \(\chi_{30345}(3568,\cdot)\) \(\chi_{30345}(4072,\cdot)\) \(\chi_{30345}(4303,\cdot)\) \(\chi_{30345}(4462,\cdot)\) \(\chi_{30345}(4588,\cdot)\) \(\chi_{30345}(5227,\cdot)\) \(\chi_{30345}(5323,\cdot)\) \(\chi_{30345}(5353,\cdot)\) \(\chi_{30345}(5857,\cdot)\) \(\chi_{30345}(6088,\cdot)\) \(\chi_{30345}(6247,\cdot)\) \(\chi_{30345}(6373,\cdot)\) \(\chi_{30345}(6877,\cdot)\) \(\chi_{30345}(7012,\cdot)\) \(\chi_{30345}(7108,\cdot)\) \(\chi_{30345}(7138,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{408})$
Fixed field: Number field defined by a degree 408 polynomial (not computed)

Values on generators

\((20231,24277,4336,28036)\) → \((1,i,e\left(\frac{1}{6}\right),e\left(\frac{89}{136}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(8\)\(11\)\(13\)\(16\)\(19\)\(22\)\(23\)\(26\)
\( \chi_{ 30345 }(1522, a) \) \(1\)\(1\)\(e\left(\frac{47}{51}\right)\)\(e\left(\frac{43}{51}\right)\)\(e\left(\frac{13}{17}\right)\)\(e\left(\frac{293}{408}\right)\)\(e\left(\frac{35}{68}\right)\)\(e\left(\frac{35}{51}\right)\)\(e\left(\frac{101}{204}\right)\)\(e\left(\frac{87}{136}\right)\)\(e\left(\frac{7}{408}\right)\)\(e\left(\frac{89}{204}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 30345 }(1522,a) \;\) at \(\;a = \) e.g. 2