Properties

Label 30345.13847
Modulus $30345$
Conductor $4335$
Order $136$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(30345, base_ring=CyclotomicField(136)) M = H._module chi = DirichletCharacter(H, M([68,34,0,25]))
 
Copy content pari:[g,chi] = znchar(Mod(13847,30345))
 

Basic properties

Modulus: \(30345\)
Conductor: \(4335\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(136\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{4335}(842,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 30345.ie

\(\chi_{30345}(722,\cdot)\) \(\chi_{30345}(848,\cdot)\) \(\chi_{30345}(1352,\cdot)\) \(\chi_{30345}(1583,\cdot)\) \(\chi_{30345}(2507,\cdot)\) \(\chi_{30345}(2633,\cdot)\) \(\chi_{30345}(3137,\cdot)\) \(\chi_{30345}(3368,\cdot)\) \(\chi_{30345}(4292,\cdot)\) \(\chi_{30345}(4418,\cdot)\) \(\chi_{30345}(4922,\cdot)\) \(\chi_{30345}(5153,\cdot)\) \(\chi_{30345}(6077,\cdot)\) \(\chi_{30345}(6707,\cdot)\) \(\chi_{30345}(6938,\cdot)\) \(\chi_{30345}(7862,\cdot)\) \(\chi_{30345}(7988,\cdot)\) \(\chi_{30345}(8492,\cdot)\) \(\chi_{30345}(8723,\cdot)\) \(\chi_{30345}(9773,\cdot)\) \(\chi_{30345}(10277,\cdot)\) \(\chi_{30345}(10508,\cdot)\) \(\chi_{30345}(11432,\cdot)\) \(\chi_{30345}(11558,\cdot)\) \(\chi_{30345}(12062,\cdot)\) \(\chi_{30345}(13217,\cdot)\) \(\chi_{30345}(13343,\cdot)\) \(\chi_{30345}(13847,\cdot)\) \(\chi_{30345}(14078,\cdot)\) \(\chi_{30345}(15002,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{136})$
Fixed field: Number field defined by a degree 136 polynomial (not computed)

Values on generators

\((20231,24277,4336,28036)\) → \((-1,i,1,e\left(\frac{25}{136}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(8\)\(11\)\(13\)\(16\)\(19\)\(22\)\(23\)\(26\)
\( \chi_{ 30345 }(13847, a) \) \(1\)\(1\)\(e\left(\frac{23}{34}\right)\)\(e\left(\frac{6}{17}\right)\)\(e\left(\frac{1}{34}\right)\)\(e\left(\frac{99}{136}\right)\)\(e\left(\frac{53}{68}\right)\)\(e\left(\frac{12}{17}\right)\)\(e\left(\frac{5}{68}\right)\)\(e\left(\frac{55}{136}\right)\)\(e\left(\frac{33}{136}\right)\)\(e\left(\frac{31}{68}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 30345 }(13847,a) \;\) at \(\;a = \) e.g. 2