Properties

Label 30345.11017
Modulus $30345$
Conductor $10115$
Order $68$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(30345, base_ring=CyclotomicField(68)) M = H._module chi = DirichletCharacter(H, M([0,17,34,28]))
 
Copy content pari:[g,chi] = znchar(Mod(11017,30345))
 

Basic properties

Modulus: \(30345\)
Conductor: \(10115\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(68\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{10115}(902,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 30345.gk

\(\chi_{30345}(307,\cdot)\) \(\chi_{30345}(1378,\cdot)\) \(\chi_{30345}(2092,\cdot)\) \(\chi_{30345}(3163,\cdot)\) \(\chi_{30345}(3877,\cdot)\) \(\chi_{30345}(4948,\cdot)\) \(\chi_{30345}(5662,\cdot)\) \(\chi_{30345}(6733,\cdot)\) \(\chi_{30345}(7447,\cdot)\) \(\chi_{30345}(8518,\cdot)\) \(\chi_{30345}(9232,\cdot)\) \(\chi_{30345}(10303,\cdot)\) \(\chi_{30345}(11017,\cdot)\) \(\chi_{30345}(12088,\cdot)\) \(\chi_{30345}(12802,\cdot)\) \(\chi_{30345}(14587,\cdot)\) \(\chi_{30345}(15658,\cdot)\) \(\chi_{30345}(16372,\cdot)\) \(\chi_{30345}(17443,\cdot)\) \(\chi_{30345}(18157,\cdot)\) \(\chi_{30345}(19228,\cdot)\) \(\chi_{30345}(21013,\cdot)\) \(\chi_{30345}(21727,\cdot)\) \(\chi_{30345}(22798,\cdot)\) \(\chi_{30345}(23512,\cdot)\) \(\chi_{30345}(24583,\cdot)\) \(\chi_{30345}(25297,\cdot)\) \(\chi_{30345}(26368,\cdot)\) \(\chi_{30345}(27082,\cdot)\) \(\chi_{30345}(28153,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{68})$
Fixed field: Number field defined by a degree 68 polynomial

Values on generators

\((20231,24277,4336,28036)\) → \((1,i,-1,e\left(\frac{7}{17}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(8\)\(11\)\(13\)\(16\)\(19\)\(22\)\(23\)\(26\)
\( \chi_{ 30345 }(11017, a) \) \(1\)\(1\)\(e\left(\frac{33}{68}\right)\)\(e\left(\frac{33}{34}\right)\)\(e\left(\frac{31}{68}\right)\)\(e\left(\frac{8}{17}\right)\)\(e\left(\frac{65}{68}\right)\)\(e\left(\frac{16}{17}\right)\)\(e\left(\frac{13}{17}\right)\)\(e\left(\frac{65}{68}\right)\)\(e\left(\frac{39}{68}\right)\)\(e\left(\frac{15}{34}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 30345 }(11017,a) \;\) at \(\;a = \) e.g. 2