Properties

Label 3025.cp
Modulus $3025$
Conductor $3025$
Order $110$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3025, base_ring=CyclotomicField(110)) M = H._module chi = DirichletCharacter(H, M([99,83])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(19,3025)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(3025\)
Conductor: \(3025\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(110\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{55})$
Fixed field: Number field defined by a degree 110 polynomial (not computed)

First 31 of 40 characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(3\) \(4\) \(6\) \(7\) \(8\) \(9\) \(12\) \(13\) \(14\)
\(\chi_{3025}(19,\cdot)\) \(-1\) \(1\) \(e\left(\frac{36}{55}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{17}{55}\right)\) \(e\left(\frac{39}{110}\right)\) \(e\left(\frac{43}{55}\right)\) \(e\left(\frac{53}{55}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{1}{110}\right)\) \(e\left(\frac{17}{55}\right)\) \(e\left(\frac{24}{55}\right)\)
\(\chi_{3025}(29,\cdot)\) \(-1\) \(1\) \(e\left(\frac{14}{55}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{28}{55}\right)\) \(e\left(\frac{61}{110}\right)\) \(e\left(\frac{32}{55}\right)\) \(e\left(\frac{42}{55}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{89}{110}\right)\) \(e\left(\frac{28}{55}\right)\) \(e\left(\frac{46}{55}\right)\)
\(\chi_{3025}(189,\cdot)\) \(-1\) \(1\) \(e\left(\frac{42}{55}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{29}{55}\right)\) \(e\left(\frac{73}{110}\right)\) \(e\left(\frac{41}{55}\right)\) \(e\left(\frac{16}{55}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{47}{110}\right)\) \(e\left(\frac{29}{55}\right)\) \(e\left(\frac{28}{55}\right)\)
\(\chi_{3025}(259,\cdot)\) \(-1\) \(1\) \(e\left(\frac{8}{55}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{16}{55}\right)\) \(e\left(\frac{27}{110}\right)\) \(e\left(\frac{34}{55}\right)\) \(e\left(\frac{24}{55}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{43}{110}\right)\) \(e\left(\frac{16}{55}\right)\) \(e\left(\frac{42}{55}\right)\)
\(\chi_{3025}(294,\cdot)\) \(-1\) \(1\) \(e\left(\frac{46}{55}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{37}{55}\right)\) \(e\left(\frac{59}{110}\right)\) \(e\left(\frac{3}{55}\right)\) \(e\left(\frac{28}{55}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{41}{110}\right)\) \(e\left(\frac{37}{55}\right)\) \(e\left(\frac{49}{55}\right)\)
\(\chi_{3025}(304,\cdot)\) \(-1\) \(1\) \(e\left(\frac{49}{55}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{43}{55}\right)\) \(e\left(\frac{21}{110}\right)\) \(e\left(\frac{2}{55}\right)\) \(e\left(\frac{37}{55}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{9}{110}\right)\) \(e\left(\frac{43}{55}\right)\) \(e\left(\frac{51}{55}\right)\)
\(\chi_{3025}(464,\cdot)\) \(-1\) \(1\) \(e\left(\frac{27}{55}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{54}{55}\right)\) \(e\left(\frac{43}{110}\right)\) \(e\left(\frac{46}{55}\right)\) \(e\left(\frac{26}{55}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{97}{110}\right)\) \(e\left(\frac{54}{55}\right)\) \(e\left(\frac{18}{55}\right)\)
\(\chi_{3025}(534,\cdot)\) \(-1\) \(1\) \(e\left(\frac{3}{55}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{6}{55}\right)\) \(e\left(\frac{17}{110}\right)\) \(e\left(\frac{54}{55}\right)\) \(e\left(\frac{9}{55}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{23}{110}\right)\) \(e\left(\frac{6}{55}\right)\) \(e\left(\frac{2}{55}\right)\)
\(\chi_{3025}(569,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{55}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{2}{55}\right)\) \(e\left(\frac{79}{110}\right)\) \(e\left(\frac{18}{55}\right)\) \(e\left(\frac{3}{55}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{81}{110}\right)\) \(e\left(\frac{2}{55}\right)\) \(e\left(\frac{19}{55}\right)\)
\(\chi_{3025}(579,\cdot)\) \(-1\) \(1\) \(e\left(\frac{29}{55}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{3}{55}\right)\) \(e\left(\frac{91}{110}\right)\) \(e\left(\frac{27}{55}\right)\) \(e\left(\frac{32}{55}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{39}{110}\right)\) \(e\left(\frac{3}{55}\right)\) \(e\left(\frac{1}{55}\right)\)
\(\chi_{3025}(739,\cdot)\) \(-1\) \(1\) \(e\left(\frac{12}{55}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{24}{55}\right)\) \(e\left(\frac{13}{110}\right)\) \(e\left(\frac{51}{55}\right)\) \(e\left(\frac{36}{55}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{37}{110}\right)\) \(e\left(\frac{24}{55}\right)\) \(e\left(\frac{8}{55}\right)\)
\(\chi_{3025}(809,\cdot)\) \(-1\) \(1\) \(e\left(\frac{53}{55}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{51}{55}\right)\) \(e\left(\frac{7}{110}\right)\) \(e\left(\frac{19}{55}\right)\) \(e\left(\frac{49}{55}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{3}{110}\right)\) \(e\left(\frac{51}{55}\right)\) \(e\left(\frac{17}{55}\right)\)
\(\chi_{3025}(854,\cdot)\) \(-1\) \(1\) \(e\left(\frac{9}{55}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{18}{55}\right)\) \(e\left(\frac{51}{110}\right)\) \(e\left(\frac{52}{55}\right)\) \(e\left(\frac{27}{55}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{69}{110}\right)\) \(e\left(\frac{18}{55}\right)\) \(e\left(\frac{6}{55}\right)\)
\(\chi_{3025}(1014,\cdot)\) \(-1\) \(1\) \(e\left(\frac{52}{55}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{49}{55}\right)\) \(e\left(\frac{93}{110}\right)\) \(e\left(\frac{1}{55}\right)\) \(e\left(\frac{46}{55}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{87}{110}\right)\) \(e\left(\frac{49}{55}\right)\) \(e\left(\frac{53}{55}\right)\)
\(\chi_{3025}(1084,\cdot)\) \(-1\) \(1\) \(e\left(\frac{48}{55}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{41}{55}\right)\) \(e\left(\frac{107}{110}\right)\) \(e\left(\frac{39}{55}\right)\) \(e\left(\frac{34}{55}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{93}{110}\right)\) \(e\left(\frac{41}{55}\right)\) \(e\left(\frac{32}{55}\right)\)
\(\chi_{3025}(1119,\cdot)\) \(-1\) \(1\) \(e\left(\frac{21}{55}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{42}{55}\right)\) \(e\left(\frac{9}{110}\right)\) \(e\left(\frac{48}{55}\right)\) \(e\left(\frac{8}{55}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{51}{110}\right)\) \(e\left(\frac{42}{55}\right)\) \(e\left(\frac{14}{55}\right)\)
\(\chi_{3025}(1289,\cdot)\) \(-1\) \(1\) \(e\left(\frac{37}{55}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{19}{55}\right)\) \(e\left(\frac{63}{110}\right)\) \(e\left(\frac{6}{55}\right)\) \(e\left(\frac{1}{55}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{27}{110}\right)\) \(e\left(\frac{19}{55}\right)\) \(e\left(\frac{43}{55}\right)\)
\(\chi_{3025}(1359,\cdot)\) \(-1\) \(1\) \(e\left(\frac{43}{55}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{31}{55}\right)\) \(e\left(\frac{97}{110}\right)\) \(e\left(\frac{4}{55}\right)\) \(e\left(\frac{19}{55}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{73}{110}\right)\) \(e\left(\frac{31}{55}\right)\) \(e\left(\frac{47}{55}\right)\)
\(\chi_{3025}(1394,\cdot)\) \(-1\) \(1\) \(e\left(\frac{31}{55}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{7}{55}\right)\) \(e\left(\frac{29}{110}\right)\) \(e\left(\frac{8}{55}\right)\) \(e\left(\frac{38}{55}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{91}{110}\right)\) \(e\left(\frac{7}{55}\right)\) \(e\left(\frac{39}{55}\right)\)
\(\chi_{3025}(1404,\cdot)\) \(-1\) \(1\) \(e\left(\frac{24}{55}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{48}{55}\right)\) \(e\left(\frac{81}{110}\right)\) \(e\left(\frac{47}{55}\right)\) \(e\left(\frac{17}{55}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{19}{110}\right)\) \(e\left(\frac{48}{55}\right)\) \(e\left(\frac{16}{55}\right)\)
\(\chi_{3025}(1634,\cdot)\) \(-1\) \(1\) \(e\left(\frac{38}{55}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{21}{55}\right)\) \(e\left(\frac{87}{110}\right)\) \(e\left(\frac{24}{55}\right)\) \(e\left(\frac{4}{55}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{53}{110}\right)\) \(e\left(\frac{21}{55}\right)\) \(e\left(\frac{7}{55}\right)\)
\(\chi_{3025}(1669,\cdot)\) \(-1\) \(1\) \(e\left(\frac{41}{55}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{27}{55}\right)\) \(e\left(\frac{49}{110}\right)\) \(e\left(\frac{23}{55}\right)\) \(e\left(\frac{13}{55}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{21}{110}\right)\) \(e\left(\frac{27}{55}\right)\) \(e\left(\frac{9}{55}\right)\)
\(\chi_{3025}(1679,\cdot)\) \(-1\) \(1\) \(e\left(\frac{4}{55}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{8}{55}\right)\) \(e\left(\frac{41}{110}\right)\) \(e\left(\frac{17}{55}\right)\) \(e\left(\frac{12}{55}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{49}{110}\right)\) \(e\left(\frac{8}{55}\right)\) \(e\left(\frac{21}{55}\right)\)
\(\chi_{3025}(1839,\cdot)\) \(-1\) \(1\) \(e\left(\frac{7}{55}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{14}{55}\right)\) \(e\left(\frac{3}{110}\right)\) \(e\left(\frac{16}{55}\right)\) \(e\left(\frac{21}{55}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{17}{110}\right)\) \(e\left(\frac{14}{55}\right)\) \(e\left(\frac{23}{55}\right)\)
\(\chi_{3025}(1944,\cdot)\) \(-1\) \(1\) \(e\left(\frac{51}{55}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{47}{55}\right)\) \(e\left(\frac{69}{110}\right)\) \(e\left(\frac{38}{55}\right)\) \(e\left(\frac{43}{55}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{61}{110}\right)\) \(e\left(\frac{47}{55}\right)\) \(e\left(\frac{34}{55}\right)\)
\(\chi_{3025}(1954,\cdot)\) \(-1\) \(1\) \(e\left(\frac{39}{55}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{23}{55}\right)\) \(e\left(\frac{1}{110}\right)\) \(e\left(\frac{42}{55}\right)\) \(e\left(\frac{7}{55}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{79}{110}\right)\) \(e\left(\frac{23}{55}\right)\) \(e\left(\frac{26}{55}\right)\)
\(\chi_{3025}(2114,\cdot)\) \(-1\) \(1\) \(e\left(\frac{47}{55}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{39}{55}\right)\) \(e\left(\frac{83}{110}\right)\) \(e\left(\frac{21}{55}\right)\) \(e\left(\frac{31}{55}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{67}{110}\right)\) \(e\left(\frac{39}{55}\right)\) \(e\left(\frac{13}{55}\right)\)
\(\chi_{3025}(2184,\cdot)\) \(-1\) \(1\) \(e\left(\frac{28}{55}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{1}{55}\right)\) \(e\left(\frac{67}{110}\right)\) \(e\left(\frac{9}{55}\right)\) \(e\left(\frac{29}{55}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{13}{110}\right)\) \(e\left(\frac{1}{55}\right)\) \(e\left(\frac{37}{55}\right)\)
\(\chi_{3025}(2219,\cdot)\) \(-1\) \(1\) \(e\left(\frac{6}{55}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{12}{55}\right)\) \(e\left(\frac{89}{110}\right)\) \(e\left(\frac{53}{55}\right)\) \(e\left(\frac{18}{55}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{101}{110}\right)\) \(e\left(\frac{12}{55}\right)\) \(e\left(\frac{4}{55}\right)\)
\(\chi_{3025}(2229,\cdot)\) \(-1\) \(1\) \(e\left(\frac{19}{55}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{38}{55}\right)\) \(e\left(\frac{71}{110}\right)\) \(e\left(\frac{12}{55}\right)\) \(e\left(\frac{2}{55}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{109}{110}\right)\) \(e\left(\frac{38}{55}\right)\) \(e\left(\frac{31}{55}\right)\)
\(\chi_{3025}(2389,\cdot)\) \(-1\) \(1\) \(e\left(\frac{32}{55}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{9}{55}\right)\) \(e\left(\frac{53}{110}\right)\) \(e\left(\frac{26}{55}\right)\) \(e\left(\frac{41}{55}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{7}{110}\right)\) \(e\left(\frac{9}{55}\right)\) \(e\left(\frac{3}{55}\right)\)