sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3025, base_ring=CyclotomicField(110))
M = H._module
chi = DirichletCharacter(H, M([77,4]))
pari:[g,chi] = znchar(Mod(984,3025))
Modulus: | \(3025\) | |
Conductor: | \(3025\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(110\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{3025}(4,\cdot)\)
\(\chi_{3025}(64,\cdot)\)
\(\chi_{3025}(69,\cdot)\)
\(\chi_{3025}(159,\cdot)\)
\(\chi_{3025}(279,\cdot)\)
\(\chi_{3025}(339,\cdot)\)
\(\chi_{3025}(344,\cdot)\)
\(\chi_{3025}(434,\cdot)\)
\(\chi_{3025}(554,\cdot)\)
\(\chi_{3025}(619,\cdot)\)
\(\chi_{3025}(709,\cdot)\)
\(\chi_{3025}(829,\cdot)\)
\(\chi_{3025}(889,\cdot)\)
\(\chi_{3025}(894,\cdot)\)
\(\chi_{3025}(984,\cdot)\)
\(\chi_{3025}(1104,\cdot)\)
\(\chi_{3025}(1164,\cdot)\)
\(\chi_{3025}(1169,\cdot)\)
\(\chi_{3025}(1259,\cdot)\)
\(\chi_{3025}(1379,\cdot)\)
\(\chi_{3025}(1439,\cdot)\)
\(\chi_{3025}(1444,\cdot)\)
\(\chi_{3025}(1534,\cdot)\)
\(\chi_{3025}(1714,\cdot)\)
\(\chi_{3025}(1719,\cdot)\)
\(\chi_{3025}(1809,\cdot)\)
\(\chi_{3025}(1929,\cdot)\)
\(\chi_{3025}(1989,\cdot)\)
\(\chi_{3025}(1994,\cdot)\)
\(\chi_{3025}(2204,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((727,2301)\) → \((e\left(\frac{7}{10}\right),e\left(\frac{2}{55}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(7\) | \(8\) | \(9\) | \(12\) | \(13\) | \(14\) |
\( \chi_{ 3025 }(984, a) \) |
\(1\) | \(1\) | \(e\left(\frac{81}{110}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{26}{55}\right)\) | \(e\left(\frac{46}{55}\right)\) | \(e\left(\frac{83}{110}\right)\) | \(e\left(\frac{23}{110}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{63}{110}\right)\) | \(e\left(\frac{107}{110}\right)\) | \(e\left(\frac{27}{55}\right)\) |
sage:chi.jacobi_sum(n)