Properties

Label 3025.483
Modulus $3025$
Conductor $275$
Order $20$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3025, base_ring=CyclotomicField(20)) M = H._module chi = DirichletCharacter(H, M([3,10]))
 
Copy content pari:[g,chi] = znchar(Mod(483,3025))
 

Basic properties

Modulus: \(3025\)
Conductor: \(275\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(20\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{275}(208,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 3025.bp

\(\chi_{3025}(362,\cdot)\) \(\chi_{3025}(483,\cdot)\) \(\chi_{3025}(967,\cdot)\) \(\chi_{3025}(1088,\cdot)\) \(\chi_{3025}(1572,\cdot)\) \(\chi_{3025}(2177,\cdot)\) \(\chi_{3025}(2298,\cdot)\) \(\chi_{3025}(2903,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{20})\)
Fixed field: 20.20.75487840807181783020496368408203125.1

Values on generators

\((727,2301)\) → \((e\left(\frac{3}{20}\right),-1)\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(6\)\(7\)\(8\)\(9\)\(12\)\(13\)\(14\)
\( \chi_{ 3025 }(483, a) \) \(1\)\(1\)\(e\left(\frac{13}{20}\right)\)\(e\left(\frac{1}{20}\right)\)\(e\left(\frac{3}{10}\right)\)\(e\left(\frac{7}{10}\right)\)\(i\)\(e\left(\frac{19}{20}\right)\)\(e\left(\frac{1}{10}\right)\)\(e\left(\frac{7}{20}\right)\)\(e\left(\frac{7}{20}\right)\)\(e\left(\frac{9}{10}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 3025 }(483,a) \;\) at \(\;a = \) e.g. 2