Properties

Label 3025.2622
Modulus $3025$
Conductor $275$
Order $20$
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3025, base_ring=CyclotomicField(20)) M = H._module chi = DirichletCharacter(H, M([17,4]))
 
Copy content pari:[g,chi] = znchar(Mod(2622,3025))
 

Basic properties

Modulus: \(3025\)
Conductor: \(275\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(20\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{275}(147,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 3025.bk

\(\chi_{3025}(608,\cdot)\) \(\chi_{3025}(928,\cdot)\) \(\chi_{3025}(977,\cdot)\) \(\chi_{3025}(1092,\cdot)\) \(\chi_{3025}(1098,\cdot)\) \(\chi_{3025}(1237,\cdot)\) \(\chi_{3025}(1963,\cdot)\) \(\chi_{3025}(2622,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{20})\)
Fixed field: 20.0.133731314748211766709573566913604736328125.3

Values on generators

\((727,2301)\) → \((e\left(\frac{17}{20}\right),e\left(\frac{1}{5}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(6\)\(7\)\(8\)\(9\)\(12\)\(13\)\(14\)
\( \chi_{ 3025 }(2622, a) \) \(-1\)\(1\)\(e\left(\frac{1}{20}\right)\)\(e\left(\frac{11}{20}\right)\)\(e\left(\frac{1}{10}\right)\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{13}{20}\right)\)\(e\left(\frac{3}{20}\right)\)\(e\left(\frac{1}{10}\right)\)\(e\left(\frac{13}{20}\right)\)\(e\left(\frac{7}{20}\right)\)\(e\left(\frac{7}{10}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 3025 }(2622,a) \;\) at \(\;a = \) e.g. 2