sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3025, base_ring=CyclotomicField(220))
M = H._module
chi = DirichletCharacter(H, M([99,152]))
pari:[g,chi] = znchar(Mod(262,3025))
Modulus: | \(3025\) | |
Conductor: | \(3025\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(220\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{3025}(47,\cdot)\)
\(\chi_{3025}(92,\cdot)\)
\(\chi_{3025}(158,\cdot)\)
\(\chi_{3025}(163,\cdot)\)
\(\chi_{3025}(262,\cdot)\)
\(\chi_{3025}(278,\cdot)\)
\(\chi_{3025}(302,\cdot)\)
\(\chi_{3025}(322,\cdot)\)
\(\chi_{3025}(367,\cdot)\)
\(\chi_{3025}(423,\cdot)\)
\(\chi_{3025}(433,\cdot)\)
\(\chi_{3025}(438,\cdot)\)
\(\chi_{3025}(537,\cdot)\)
\(\chi_{3025}(553,\cdot)\)
\(\chi_{3025}(577,\cdot)\)
\(\chi_{3025}(597,\cdot)\)
\(\chi_{3025}(642,\cdot)\)
\(\chi_{3025}(698,\cdot)\)
\(\chi_{3025}(708,\cdot)\)
\(\chi_{3025}(713,\cdot)\)
\(\chi_{3025}(812,\cdot)\)
\(\chi_{3025}(828,\cdot)\)
\(\chi_{3025}(852,\cdot)\)
\(\chi_{3025}(872,\cdot)\)
\(\chi_{3025}(917,\cdot)\)
\(\chi_{3025}(973,\cdot)\)
\(\chi_{3025}(983,\cdot)\)
\(\chi_{3025}(988,\cdot)\)
\(\chi_{3025}(1087,\cdot)\)
\(\chi_{3025}(1103,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((727,2301)\) → \((e\left(\frac{9}{20}\right),e\left(\frac{38}{55}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(7\) | \(8\) | \(9\) | \(12\) | \(13\) | \(14\) |
\( \chi_{ 3025 }(262, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{31}{220}\right)\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{31}{110}\right)\) | \(e\left(\frac{1}{11}\right)\) | \(e\left(\frac{19}{220}\right)\) | \(e\left(\frac{93}{220}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{51}{220}\right)\) | \(e\left(\frac{73}{220}\right)\) | \(e\left(\frac{5}{22}\right)\) |
sage:chi.jacobi_sum(n)