sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3025, base_ring=CyclotomicField(20))
M = H._module
chi = DirichletCharacter(H, M([3,12]))
pari:[g,chi] = znchar(Mod(2308,3025))
\(\chi_{3025}(202,\cdot)\)
\(\chi_{3025}(323,\cdot)\)
\(\chi_{3025}(487,\cdot)\)
\(\chi_{3025}(753,\cdot)\)
\(\chi_{3025}(1213,\cdot)\)
\(\chi_{3025}(2308,\cdot)\)
\(\chi_{3025}(2447,\cdot)\)
\(\chi_{3025}(2792,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((727,2301)\) → \((e\left(\frac{3}{20}\right),e\left(\frac{3}{5}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(7\) | \(8\) | \(9\) | \(12\) | \(13\) | \(14\) |
\( \chi_{ 3025 }(2308, a) \) |
\(-1\) | \(1\) | \(-i\) | \(e\left(\frac{17}{20}\right)\) | \(-1\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{19}{20}\right)\) | \(i\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{7}{20}\right)\) | \(e\left(\frac{9}{20}\right)\) | \(e\left(\frac{7}{10}\right)\) |
sage:chi.jacobi_sum(n)