sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3025, base_ring=CyclotomicField(110))
M = H._module
chi = DirichletCharacter(H, M([88,72]))
pari:[g,chi] = znchar(Mod(1786,3025))
Modulus: | \(3025\) | |
Conductor: | \(3025\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(55\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{3025}(31,\cdot)\)
\(\chi_{3025}(71,\cdot)\)
\(\chi_{3025}(91,\cdot)\)
\(\chi_{3025}(136,\cdot)\)
\(\chi_{3025}(306,\cdot)\)
\(\chi_{3025}(346,\cdot)\)
\(\chi_{3025}(411,\cdot)\)
\(\chi_{3025}(581,\cdot)\)
\(\chi_{3025}(621,\cdot)\)
\(\chi_{3025}(641,\cdot)\)
\(\chi_{3025}(896,\cdot)\)
\(\chi_{3025}(916,\cdot)\)
\(\chi_{3025}(961,\cdot)\)
\(\chi_{3025}(1131,\cdot)\)
\(\chi_{3025}(1171,\cdot)\)
\(\chi_{3025}(1191,\cdot)\)
\(\chi_{3025}(1236,\cdot)\)
\(\chi_{3025}(1406,\cdot)\)
\(\chi_{3025}(1446,\cdot)\)
\(\chi_{3025}(1466,\cdot)\)
\(\chi_{3025}(1511,\cdot)\)
\(\chi_{3025}(1681,\cdot)\)
\(\chi_{3025}(1741,\cdot)\)
\(\chi_{3025}(1786,\cdot)\)
\(\chi_{3025}(1956,\cdot)\)
\(\chi_{3025}(1996,\cdot)\)
\(\chi_{3025}(2016,\cdot)\)
\(\chi_{3025}(2061,\cdot)\)
\(\chi_{3025}(2231,\cdot)\)
\(\chi_{3025}(2271,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((727,2301)\) → \((e\left(\frac{4}{5}\right),e\left(\frac{36}{55}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(7\) | \(8\) | \(9\) | \(12\) | \(13\) | \(14\) |
\( \chi_{ 3025 }(1786, a) \) |
\(1\) | \(1\) | \(e\left(\frac{5}{11}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{10}{11}\right)\) | \(e\left(\frac{36}{55}\right)\) | \(e\left(\frac{32}{55}\right)\) | \(e\left(\frac{4}{11}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{6}{55}\right)\) | \(e\left(\frac{17}{55}\right)\) | \(e\left(\frac{2}{55}\right)\) |
sage:chi.jacobi_sum(n)