sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3025, base_ring=CyclotomicField(110))
M = H._module
chi = DirichletCharacter(H, M([77,80]))
pari:[g,chi] = znchar(Mod(1409,3025))
Modulus: | \(3025\) | |
Conductor: | \(3025\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(110\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{3025}(34,\cdot)\)
\(\chi_{3025}(89,\cdot)\)
\(\chi_{3025}(144,\cdot)\)
\(\chi_{3025}(254,\cdot)\)
\(\chi_{3025}(309,\cdot)\)
\(\chi_{3025}(419,\cdot)\)
\(\chi_{3025}(529,\cdot)\)
\(\chi_{3025}(584,\cdot)\)
\(\chi_{3025}(639,\cdot)\)
\(\chi_{3025}(694,\cdot)\)
\(\chi_{3025}(804,\cdot)\)
\(\chi_{3025}(859,\cdot)\)
\(\chi_{3025}(914,\cdot)\)
\(\chi_{3025}(1079,\cdot)\)
\(\chi_{3025}(1134,\cdot)\)
\(\chi_{3025}(1189,\cdot)\)
\(\chi_{3025}(1244,\cdot)\)
\(\chi_{3025}(1354,\cdot)\)
\(\chi_{3025}(1409,\cdot)\)
\(\chi_{3025}(1464,\cdot)\)
\(\chi_{3025}(1519,\cdot)\)
\(\chi_{3025}(1629,\cdot)\)
\(\chi_{3025}(1684,\cdot)\)
\(\chi_{3025}(1739,\cdot)\)
\(\chi_{3025}(1794,\cdot)\)
\(\chi_{3025}(1904,\cdot)\)
\(\chi_{3025}(1959,\cdot)\)
\(\chi_{3025}(2014,\cdot)\)
\(\chi_{3025}(2069,\cdot)\)
\(\chi_{3025}(2234,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((727,2301)\) → \((e\left(\frac{7}{10}\right),e\left(\frac{8}{11}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(7\) | \(8\) | \(9\) | \(12\) | \(13\) | \(14\) |
\( \chi_{ 3025 }(1409, a) \) |
\(1\) | \(1\) | \(e\left(\frac{47}{110}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{47}{55}\right)\) | \(e\left(\frac{18}{55}\right)\) | \(e\left(\frac{13}{22}\right)\) | \(e\left(\frac{31}{110}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{83}{110}\right)\) | \(e\left(\frac{83}{110}\right)\) | \(e\left(\frac{1}{55}\right)\) |
sage:chi.jacobi_sum(n)