sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3000, base_ring=CyclotomicField(10))
M = H._module
chi = DirichletCharacter(H, M([0,5,5,1]))
pari:[g,chi] = znchar(Mod(149,3000))
\(\chi_{3000}(149,\cdot)\)
\(\chi_{3000}(1349,\cdot)\)
\(\chi_{3000}(1949,\cdot)\)
\(\chi_{3000}(2549,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((751,1501,1001,2377)\) → \((1,-1,-1,e\left(\frac{1}{10}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) |
| \( \chi_{ 3000 }(149, a) \) |
\(-1\) | \(1\) | \(-1\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{9}{10}\right)\) |
sage:chi.jacobi_sum(n)