sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2952, base_ring=CyclotomicField(120))
M = H._module
chi = DirichletCharacter(H, M([0,60,80,21]))
pari:[g,chi] = znchar(Mod(2653,2952))
| Modulus: | \(2952\) | |
| Conductor: | \(2952\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(120\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{2952}(13,\cdot)\)
\(\chi_{2952}(157,\cdot)\)
\(\chi_{2952}(229,\cdot)\)
\(\chi_{2952}(421,\cdot)\)
\(\chi_{2952}(445,\cdot)\)
\(\chi_{2952}(589,\cdot)\)
\(\chi_{2952}(637,\cdot)\)
\(\chi_{2952}(709,\cdot)\)
\(\chi_{2952}(805,\cdot)\)
\(\chi_{2952}(949,\cdot)\)
\(\chi_{2952}(997,\cdot)\)
\(\chi_{2952}(1141,\cdot)\)
\(\chi_{2952}(1165,\cdot)\)
\(\chi_{2952}(1213,\cdot)\)
\(\chi_{2952}(1237,\cdot)\)
\(\chi_{2952}(1381,\cdot)\)
\(\chi_{2952}(1429,\cdot)\)
\(\chi_{2952}(1573,\cdot)\)
\(\chi_{2952}(1669,\cdot)\)
\(\chi_{2952}(1741,\cdot)\)
\(\chi_{2952}(1789,\cdot)\)
\(\chi_{2952}(1933,\cdot)\)
\(\chi_{2952}(1957,\cdot)\)
\(\chi_{2952}(2149,\cdot)\)
\(\chi_{2952}(2221,\cdot)\)
\(\chi_{2952}(2365,\cdot)\)
\(\chi_{2952}(2389,\cdot)\)
\(\chi_{2952}(2605,\cdot)\)
\(\chi_{2952}(2653,\cdot)\)
\(\chi_{2952}(2677,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((2215,1477,2297,1441)\) → \((1,-1,e\left(\frac{2}{3}\right),e\left(\frac{7}{40}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) |
| \( \chi_{ 2952 }(2653, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{41}{60}\right)\) | \(e\left(\frac{59}{120}\right)\) | \(e\left(\frac{83}{120}\right)\) | \(e\left(\frac{31}{120}\right)\) | \(e\left(\frac{31}{40}\right)\) | \(e\left(\frac{3}{40}\right)\) | \(e\left(\frac{19}{30}\right)\) | \(e\left(\frac{11}{30}\right)\) | \(e\left(\frac{47}{120}\right)\) | \(e\left(\frac{7}{30}\right)\) |
sage:chi.jacobi_sum(n)