Properties

Label 2952.1643
Modulus $2952$
Conductor $2952$
Order $24$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2952, base_ring=CyclotomicField(24)) M = H._module chi = DirichletCharacter(H, M([12,12,20,9]))
 
Copy content pari:[g,chi] = znchar(Mod(1643,2952))
 

Basic properties

Modulus: \(2952\)
Conductor: \(2952\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(24\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2952.dh

\(\chi_{2952}(659,\cdot)\) \(\chi_{2952}(875,\cdot)\) \(\chi_{2952}(1643,\cdot)\) \(\chi_{2952}(1667,\cdot)\) \(\chi_{2952}(1859,\cdot)\) \(\chi_{2952}(1883,\cdot)\) \(\chi_{2952}(2651,\cdot)\) \(\chi_{2952}(2867,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{24})\)
Fixed field: 24.0.76191408985005508106702496993264346731318765284567567717892096.1

Values on generators

\((2215,1477,2297,1441)\) → \((-1,-1,e\left(\frac{5}{6}\right),e\left(\frac{3}{8}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)
\( \chi_{ 2952 }(1643, a) \) \(-1\)\(1\)\(e\left(\frac{11}{12}\right)\)\(e\left(\frac{11}{24}\right)\)\(e\left(\frac{23}{24}\right)\)\(e\left(\frac{19}{24}\right)\)\(e\left(\frac{7}{8}\right)\)\(e\left(\frac{3}{8}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{23}{24}\right)\)\(e\left(\frac{2}{3}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2952 }(1643,a) \;\) at \(\;a = \) e.g. 2