Properties

Label 2912.ix
Modulus $2912$
Conductor $2912$
Order $24$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2912, base_ring=CyclotomicField(24)) M = H._module chi = DirichletCharacter(H, M([12,9,4,16])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(451,2912)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(2912\)
Conductor: \(2912\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(24\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{24})\)
Fixed field: Number field defined by a degree 24 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(5\) \(9\) \(11\) \(15\) \(17\) \(19\) \(23\) \(25\) \(27\)
\(\chi_{2912}(451,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{7}{24}\right)\) \(-i\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{3}{8}\right)\)
\(\chi_{2912}(523,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{17}{24}\right)\) \(i\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{5}{8}\right)\)
\(\chi_{2912}(1179,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{13}{24}\right)\) \(i\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{8}\right)\)
\(\chi_{2912}(1251,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{23}{24}\right)\) \(-i\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{3}{8}\right)\)
\(\chi_{2912}(1907,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{19}{24}\right)\) \(-i\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{7}{8}\right)\)
\(\chi_{2912}(1979,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{5}{24}\right)\) \(i\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{8}\right)\)
\(\chi_{2912}(2635,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{1}{24}\right)\) \(i\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{5}{8}\right)\)
\(\chi_{2912}(2707,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{11}{24}\right)\) \(-i\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{7}{8}\right)\)