Properties

Label 2912.577
Modulus $2912$
Conductor $91$
Order $12$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2912, base_ring=CyclotomicField(12)) M = H._module chi = DirichletCharacter(H, M([0,0,2,9]))
 
Copy content pari:[g,chi] = znchar(Mod(577,2912))
 

Basic properties

Modulus: \(2912\)
Conductor: \(91\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(12\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{91}(31,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2912.hx

\(\chi_{2912}(577,\cdot)\) \(\chi_{2912}(801,\cdot)\) \(\chi_{2912}(1825,\cdot)\) \(\chi_{2912}(2049,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{12})\)
Fixed field: 12.12.2995508600908518877.1

Values on generators

\((2367,1093,1249,2017)\) → \((1,1,e\left(\frac{1}{6}\right),-i)\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(9\)\(11\)\(15\)\(17\)\(19\)\(23\)\(25\)\(27\)
\( \chi_{ 2912 }(577, a) \) \(1\)\(1\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{11}{12}\right)\)\(-i\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{1}{6}\right)\)\(-1\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2912 }(577,a) \;\) at \(\;a = \) e.g. 2