sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2912, base_ring=CyclotomicField(24))
M = H._module
chi = DirichletCharacter(H, M([12,3,4,12]))
pari:[g,chi] = znchar(Mod(1403,2912))
Modulus: | \(2912\) | |
Conductor: | \(2912\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(24\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{2912}(467,\cdot)\)
\(\chi_{2912}(675,\cdot)\)
\(\chi_{2912}(1195,\cdot)\)
\(\chi_{2912}(1403,\cdot)\)
\(\chi_{2912}(1923,\cdot)\)
\(\chi_{2912}(2131,\cdot)\)
\(\chi_{2912}(2651,\cdot)\)
\(\chi_{2912}(2859,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((2367,1093,1249,2017)\) → \((-1,e\left(\frac{1}{8}\right),e\left(\frac{1}{6}\right),-1)\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(9\) | \(11\) | \(15\) | \(17\) | \(19\) | \(23\) | \(25\) | \(27\) |
\( \chi_{ 2912 }(1403, a) \) |
\(1\) | \(1\) | \(e\left(\frac{1}{24}\right)\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{7}{24}\right)\) | \(-1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{17}{24}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{8}\right)\) |
sage:chi.jacobi_sum(n)