Properties

Label 2890.2291
Modulus $2890$
Conductor $289$
Order $68$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2890, base_ring=CyclotomicField(68)) M = H._module chi = DirichletCharacter(H, M([0,5]))
 
Copy content pari:[g,chi] = znchar(Mod(2291,2890))
 

Basic properties

Modulus: \(2890\)
Conductor: \(289\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(68\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{289}(268,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2890.y

\(\chi_{2890}(21,\cdot)\) \(\chi_{2890}(81,\cdot)\) \(\chi_{2890}(191,\cdot)\) \(\chi_{2890}(361,\cdot)\) \(\chi_{2890}(421,\cdot)\) \(\chi_{2890}(531,\cdot)\) \(\chi_{2890}(591,\cdot)\) \(\chi_{2890}(701,\cdot)\) \(\chi_{2890}(761,\cdot)\) \(\chi_{2890}(871,\cdot)\) \(\chi_{2890}(931,\cdot)\) \(\chi_{2890}(1041,\cdot)\) \(\chi_{2890}(1101,\cdot)\) \(\chi_{2890}(1211,\cdot)\) \(\chi_{2890}(1271,\cdot)\) \(\chi_{2890}(1381,\cdot)\) \(\chi_{2890}(1441,\cdot)\) \(\chi_{2890}(1551,\cdot)\) \(\chi_{2890}(1611,\cdot)\) \(\chi_{2890}(1721,\cdot)\) \(\chi_{2890}(1781,\cdot)\) \(\chi_{2890}(1891,\cdot)\) \(\chi_{2890}(1951,\cdot)\) \(\chi_{2890}(2121,\cdot)\) \(\chi_{2890}(2231,\cdot)\) \(\chi_{2890}(2291,\cdot)\) \(\chi_{2890}(2401,\cdot)\) \(\chi_{2890}(2461,\cdot)\) \(\chi_{2890}(2571,\cdot)\) \(\chi_{2890}(2631,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{68})$
Fixed field: Number field defined by a degree 68 polynomial

Values on generators

\((1157,581)\) → \((1,e\left(\frac{5}{68}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(13\)\(19\)\(21\)\(23\)\(27\)\(29\)
\( \chi_{ 2890 }(2291, a) \) \(1\)\(1\)\(e\left(\frac{5}{68}\right)\)\(e\left(\frac{27}{68}\right)\)\(e\left(\frac{5}{34}\right)\)\(e\left(\frac{47}{68}\right)\)\(e\left(\frac{7}{17}\right)\)\(e\left(\frac{1}{34}\right)\)\(e\left(\frac{8}{17}\right)\)\(e\left(\frac{27}{68}\right)\)\(e\left(\frac{15}{68}\right)\)\(e\left(\frac{13}{68}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2890 }(2291,a) \;\) at \(\;a = \) e.g. 2