sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2890, base_ring=CyclotomicField(68))
M = H._module
chi = DirichletCharacter(H, M([0,5]))
         
     
    
    
        
        pari:[g,chi] = znchar(Mod(2291,2890))
         
     
    
  \(\chi_{2890}(21,\cdot)\)
  \(\chi_{2890}(81,\cdot)\)
  \(\chi_{2890}(191,\cdot)\)
  \(\chi_{2890}(361,\cdot)\)
  \(\chi_{2890}(421,\cdot)\)
  \(\chi_{2890}(531,\cdot)\)
  \(\chi_{2890}(591,\cdot)\)
  \(\chi_{2890}(701,\cdot)\)
  \(\chi_{2890}(761,\cdot)\)
  \(\chi_{2890}(871,\cdot)\)
  \(\chi_{2890}(931,\cdot)\)
  \(\chi_{2890}(1041,\cdot)\)
  \(\chi_{2890}(1101,\cdot)\)
  \(\chi_{2890}(1211,\cdot)\)
  \(\chi_{2890}(1271,\cdot)\)
  \(\chi_{2890}(1381,\cdot)\)
  \(\chi_{2890}(1441,\cdot)\)
  \(\chi_{2890}(1551,\cdot)\)
  \(\chi_{2890}(1611,\cdot)\)
  \(\chi_{2890}(1721,\cdot)\)
  \(\chi_{2890}(1781,\cdot)\)
  \(\chi_{2890}(1891,\cdot)\)
  \(\chi_{2890}(1951,\cdot)\)
  \(\chi_{2890}(2121,\cdot)\)
  \(\chi_{2890}(2231,\cdot)\)
  \(\chi_{2890}(2291,\cdot)\)
  \(\chi_{2890}(2401,\cdot)\)
  \(\chi_{2890}(2461,\cdot)\)
  \(\chi_{2890}(2571,\cdot)\)
  \(\chi_{2890}(2631,\cdot)\)
 ... 
    
        
        sage:chi.galois_orbit()
         
     
    
    
        
        pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
         
     
    
 
\((1157,581)\) → \((1,e\left(\frac{5}{68}\right))\)
  
    
      
        | \(a\) | 
        \(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(11\) | \(13\) | \(19\) | \(21\) | \(23\) | \(27\) | \(29\) |       
    
    
      | \( \chi_{ 2890 }(2291, a) \) | 
      \(1\) | \(1\) | \(e\left(\frac{5}{68}\right)\) | \(e\left(\frac{27}{68}\right)\) | \(e\left(\frac{5}{34}\right)\) | \(e\left(\frac{47}{68}\right)\) | \(e\left(\frac{7}{17}\right)\) | \(e\left(\frac{1}{34}\right)\) | \(e\left(\frac{8}{17}\right)\) | \(e\left(\frac{27}{68}\right)\) | \(e\left(\frac{15}{68}\right)\) | \(e\left(\frac{13}{68}\right)\) |     
  
 
    
        
        sage:chi.jacobi_sum(n)