sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(289, base_ring=CyclotomicField(16))
M = H._module
chi = DirichletCharacter(H, M([13]))
pari:[g,chi] = znchar(Mod(131,289))
\(\chi_{289}(40,\cdot)\)
\(\chi_{289}(65,\cdot)\)
\(\chi_{289}(75,\cdot)\)
\(\chi_{289}(131,\cdot)\)
\(\chi_{289}(158,\cdot)\)
\(\chi_{289}(214,\cdot)\)
\(\chi_{289}(224,\cdot)\)
\(\chi_{289}(249,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\(3\) → \(e\left(\frac{13}{16}\right)\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) |
\( \chi_{ 289 }(131, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{13}{16}\right)\) | \(-i\) | \(e\left(\frac{1}{16}\right)\) | \(e\left(\frac{3}{16}\right)\) | \(e\left(\frac{15}{16}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{7}{16}\right)\) | \(e\left(\frac{11}{16}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)