Properties

Label 28665.3676
Modulus $28665$
Conductor $117$
Order $6$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(28665, base_ring=CyclotomicField(6)) M = H._module chi = DirichletCharacter(H, M([2,0,0,5]))
 
Copy content pari:[g,chi] = znchar(Mod(3676,28665))
 

Basic properties

Modulus: \(28665\)
Conductor: \(117\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(6\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{117}(49,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 28665.hl

\(\chi_{28665}(3676,\cdot)\) \(\chi_{28665}(13966,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\mathbb{Q}(\zeta_3)\)
Fixed field: 6.6.2436053373.2

Values on generators

\((25481,11467,18721,11026)\) → \((e\left(\frac{1}{3}\right),1,1,e\left(\frac{5}{6}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(8\)\(11\)\(16\)\(17\)\(19\)\(22\)\(23\)\(29\)
\( \chi_{ 28665 }(3676, a) \) \(1\)\(1\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{1}{3}\right)\)\(-1\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{1}{3}\right)\)\(1\)\(e\left(\frac{2}{3}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 28665 }(3676,a) \;\) at \(\;a = \) e.g. 2