sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(28665, base_ring=CyclotomicField(84))
M = H._module
chi = DirichletCharacter(H, M([28,63,36,7]))
pari:[g,chi] = znchar(Mod(28498,28665))
| Modulus: | \(28665\) | |
| Conductor: | \(28665\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(84\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{28665}(1597,\cdot)\)
\(\chi_{28665}(3928,\cdot)\)
\(\chi_{28665}(5272,\cdot)\)
\(\chi_{28665}(5692,\cdot)\)
\(\chi_{28665}(5713,\cdot)\)
\(\chi_{28665}(8023,\cdot)\)
\(\chi_{28665}(9367,\cdot)\)
\(\chi_{28665}(9787,\cdot)\)
\(\chi_{28665}(9808,\cdot)\)
\(\chi_{28665}(12118,\cdot)\)
\(\chi_{28665}(13462,\cdot)\)
\(\chi_{28665}(13882,\cdot)\)
\(\chi_{28665}(13903,\cdot)\)
\(\chi_{28665}(16213,\cdot)\)
\(\chi_{28665}(17557,\cdot)\)
\(\chi_{28665}(17977,\cdot)\)
\(\chi_{28665}(17998,\cdot)\)
\(\chi_{28665}(20308,\cdot)\)
\(\chi_{28665}(21652,\cdot)\)
\(\chi_{28665}(22072,\cdot)\)
\(\chi_{28665}(22093,\cdot)\)
\(\chi_{28665}(25747,\cdot)\)
\(\chi_{28665}(26188,\cdot)\)
\(\chi_{28665}(28498,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((25481,11467,18721,11026)\) → \((e\left(\frac{1}{3}\right),-i,e\left(\frac{3}{7}\right),e\left(\frac{1}{12}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(8\) | \(11\) | \(16\) | \(17\) | \(19\) | \(22\) | \(23\) | \(29\) |
| \( \chi_{ 28665 }(28498, a) \) |
\(1\) | \(1\) | \(e\left(\frac{13}{42}\right)\) | \(e\left(\frac{13}{21}\right)\) | \(e\left(\frac{13}{14}\right)\) | \(e\left(\frac{5}{84}\right)\) | \(e\left(\frac{5}{21}\right)\) | \(e\left(\frac{53}{84}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{31}{84}\right)\) | \(e\left(\frac{1}{28}\right)\) | \(e\left(\frac{37}{42}\right)\) |
sage:chi.jacobi_sum(n)