sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(28665, base_ring=CyclotomicField(84))
M = H._module
chi = DirichletCharacter(H, M([28,42,82,21]))
pari:[g,chi] = znchar(Mod(229,28665))
| Modulus: | \(28665\) | |
| Conductor: | \(28665\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(84\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{28665}(229,\cdot)\)
\(\chi_{28665}(304,\cdot)\)
\(\chi_{28665}(4009,\cdot)\)
\(\chi_{28665}(4324,\cdot)\)
\(\chi_{28665}(4399,\cdot)\)
\(\chi_{28665}(4714,\cdot)\)
\(\chi_{28665}(8419,\cdot)\)
\(\chi_{28665}(8494,\cdot)\)
\(\chi_{28665}(8809,\cdot)\)
\(\chi_{28665}(12199,\cdot)\)
\(\chi_{28665}(12589,\cdot)\)
\(\chi_{28665}(12904,\cdot)\)
\(\chi_{28665}(16294,\cdot)\)
\(\chi_{28665}(16609,\cdot)\)
\(\chi_{28665}(16684,\cdot)\)
\(\chi_{28665}(16999,\cdot)\)
\(\chi_{28665}(20389,\cdot)\)
\(\chi_{28665}(20704,\cdot)\)
\(\chi_{28665}(20779,\cdot)\)
\(\chi_{28665}(21094,\cdot)\)
\(\chi_{28665}(24484,\cdot)\)
\(\chi_{28665}(24799,\cdot)\)
\(\chi_{28665}(25189,\cdot)\)
\(\chi_{28665}(28579,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((25481,11467,18721,11026)\) → \((e\left(\frac{1}{3}\right),-1,e\left(\frac{41}{42}\right),i)\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(8\) | \(11\) | \(16\) | \(17\) | \(19\) | \(22\) | \(23\) | \(29\) |
| \( \chi_{ 28665 }(229, a) \) |
\(1\) | \(1\) | \(e\left(\frac{13}{28}\right)\) | \(e\left(\frac{13}{14}\right)\) | \(e\left(\frac{11}{28}\right)\) | \(e\left(\frac{11}{84}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{17}{42}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{25}{42}\right)\) | \(e\left(\frac{16}{21}\right)\) | \(e\left(\frac{19}{21}\right)\) |
sage:chi.jacobi_sum(n)