Properties

Label 28665.2273
Modulus $28665$
Conductor $4095$
Order $12$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(28665, base_ring=CyclotomicField(12)) M = H._module chi = DirichletCharacter(H, M([10,9,10,7]))
 
Copy content pari:[g,chi] = znchar(Mod(2273,28665))
 

Basic properties

Modulus: \(28665\)
Conductor: \(4095\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(12\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{4095}(2273,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 28665.tv

\(\chi_{28665}(227,\cdot)\) \(\chi_{28665}(2273,\cdot)\) \(\chi_{28665}(6242,\cdot)\) \(\chi_{28665}(22718,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{12})\)
Fixed field: Number field defined by a degree 12 polynomial

Values on generators

\((25481,11467,18721,11026)\) → \((e\left(\frac{5}{6}\right),-i,e\left(\frac{5}{6}\right),e\left(\frac{7}{12}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(8\)\(11\)\(16\)\(17\)\(19\)\(22\)\(23\)\(29\)
\( \chi_{ 28665 }(2273, a) \) \(1\)\(1\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{2}{3}\right)\)\(-1\)\(i\)\(e\left(\frac{1}{3}\right)\)\(i\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{1}{12}\right)\)\(e\left(\frac{11}{12}\right)\)\(e\left(\frac{2}{3}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 28665 }(2273,a) \;\) at \(\;a = \) e.g. 2