sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(28665, base_ring=CyclotomicField(84))
M = H._module
chi = DirichletCharacter(H, M([70,42,52,7]))
pari:[g,chi] = znchar(Mod(13379,28665))
| Modulus: | \(28665\) | |
| Conductor: | \(28665\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(84\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{28665}(1094,\cdot)\)
\(\chi_{28665}(2594,\cdot)\)
\(\chi_{28665}(3854,\cdot)\)
\(\chi_{28665}(5189,\cdot)\)
\(\chi_{28665}(6134,\cdot)\)
\(\chi_{28665}(6689,\cdot)\)
\(\chi_{28665}(7949,\cdot)\)
\(\chi_{28665}(9284,\cdot)\)
\(\chi_{28665}(10229,\cdot)\)
\(\chi_{28665}(10784,\cdot)\)
\(\chi_{28665}(12044,\cdot)\)
\(\chi_{28665}(13379,\cdot)\)
\(\chi_{28665}(14324,\cdot)\)
\(\chi_{28665}(14879,\cdot)\)
\(\chi_{28665}(18419,\cdot)\)
\(\chi_{28665}(18974,\cdot)\)
\(\chi_{28665}(20234,\cdot)\)
\(\chi_{28665}(21569,\cdot)\)
\(\chi_{28665}(22514,\cdot)\)
\(\chi_{28665}(23069,\cdot)\)
\(\chi_{28665}(24329,\cdot)\)
\(\chi_{28665}(25664,\cdot)\)
\(\chi_{28665}(26609,\cdot)\)
\(\chi_{28665}(28424,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((25481,11467,18721,11026)\) → \((e\left(\frac{5}{6}\right),-1,e\left(\frac{13}{21}\right),e\left(\frac{1}{12}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(8\) | \(11\) | \(16\) | \(17\) | \(19\) | \(22\) | \(23\) | \(29\) |
| \( \chi_{ 28665 }(13379, a) \) |
\(1\) | \(1\) | \(e\left(\frac{43}{84}\right)\) | \(e\left(\frac{1}{42}\right)\) | \(e\left(\frac{15}{28}\right)\) | \(e\left(\frac{5}{28}\right)\) | \(e\left(\frac{1}{21}\right)\) | \(e\left(\frac{9}{14}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{29}{42}\right)\) | \(e\left(\frac{1}{42}\right)\) | \(e\left(\frac{13}{42}\right)\) |
sage:chi.jacobi_sum(n)