Properties

Label 2808.2675
Modulus $2808$
Conductor $2808$
Order $18$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2808, base_ring=CyclotomicField(18)) M = H._module chi = DirichletCharacter(H, M([9,9,1,15]))
 
Copy content pari:[g,chi] = znchar(Mod(2675,2808))
 

Basic properties

Modulus: \(2808\)
Conductor: \(2808\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(18\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2808.ez

\(\chi_{2808}(563,\cdot)\) \(\chi_{2808}(803,\cdot)\) \(\chi_{2808}(1499,\cdot)\) \(\chi_{2808}(1739,\cdot)\) \(\chi_{2808}(2435,\cdot)\) \(\chi_{2808}(2675,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{9})\)
Fixed field: 18.18.20296288612744454761949989145129188927343689728.1

Values on generators

\((703,1405,2081,1081)\) → \((-1,-1,e\left(\frac{1}{18}\right),e\left(\frac{5}{6}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(35\)
\( \chi_{ 2808 }(2675, a) \) \(1\)\(1\)\(e\left(\frac{5}{18}\right)\)\(e\left(\frac{5}{9}\right)\)\(e\left(\frac{5}{9}\right)\)\(-1\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{4}{9}\right)\)\(e\left(\frac{5}{9}\right)\)\(e\left(\frac{8}{9}\right)\)\(e\left(\frac{1}{9}\right)\)\(e\left(\frac{5}{6}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2808 }(2675,a) \;\) at \(\;a = \) e.g. 2