sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2808, base_ring=CyclotomicField(6))
M = H._module
chi = DirichletCharacter(H, M([0,0,2,3]))
pari:[g,chi] = znchar(Mod(2521,2808))
\(\chi_{2808}(1585,\cdot)\)
\(\chi_{2808}(2521,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((703,1405,2081,1081)\) → \((1,1,e\left(\frac{1}{3}\right),-1)\)
| \(a\) |
\(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(35\) |
| \( \chi_{ 2808 }(2521, a) \) |
\(1\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(1\) | \(-1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(1\) |
sage:chi.jacobi_sum(n)