sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2800, base_ring=CyclotomicField(20))
M = H._module
chi = DirichletCharacter(H, M([0,5,4,10]))
pari:[g,chi] = znchar(Mod(741,2800))
| Modulus: | \(2800\) | |
| Conductor: | \(2800\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(20\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{2800}(181,\cdot)\)
\(\chi_{2800}(461,\cdot)\)
\(\chi_{2800}(741,\cdot)\)
\(\chi_{2800}(1021,\cdot)\)
\(\chi_{2800}(1581,\cdot)\)
\(\chi_{2800}(1861,\cdot)\)
\(\chi_{2800}(2141,\cdot)\)
\(\chi_{2800}(2421,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((351,2101,2577,801)\) → \((1,i,e\left(\frac{1}{5}\right),-1)\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(9\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(27\) | \(29\) | \(31\) |
| \( \chi_{ 2800 }(741, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{13}{20}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{9}{20}\right)\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{17}{20}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{1}{10}\right)\) |
sage:chi.jacobi_sum(n)