Properties

Label 2800.741
Modulus $2800$
Conductor $2800$
Order $20$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2800, base_ring=CyclotomicField(20)) M = H._module chi = DirichletCharacter(H, M([0,5,4,10]))
 
Copy content pari:[g,chi] = znchar(Mod(741,2800))
 

Basic properties

Modulus: \(2800\)
Conductor: \(2800\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(20\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2800.ei

\(\chi_{2800}(181,\cdot)\) \(\chi_{2800}(461,\cdot)\) \(\chi_{2800}(741,\cdot)\) \(\chi_{2800}(1021,\cdot)\) \(\chi_{2800}(1581,\cdot)\) \(\chi_{2800}(1861,\cdot)\) \(\chi_{2800}(2141,\cdot)\) \(\chi_{2800}(2421,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{20})\)
Fixed field: Number field defined by a degree 20 polynomial

Values on generators

\((351,2101,2577,801)\) → \((1,i,e\left(\frac{1}{5}\right),-1)\)

First values

\(a\) \(-1\)\(1\)\(3\)\(9\)\(11\)\(13\)\(17\)\(19\)\(23\)\(27\)\(29\)\(31\)
\( \chi_{ 2800 }(741, a) \) \(-1\)\(1\)\(e\left(\frac{13}{20}\right)\)\(e\left(\frac{3}{10}\right)\)\(e\left(\frac{9}{20}\right)\)\(e\left(\frac{1}{20}\right)\)\(e\left(\frac{1}{10}\right)\)\(e\left(\frac{17}{20}\right)\)\(e\left(\frac{7}{10}\right)\)\(e\left(\frac{19}{20}\right)\)\(e\left(\frac{3}{20}\right)\)\(e\left(\frac{1}{10}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2800 }(741,a) \;\) at \(\;a = \) e.g. 2