sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2784, base_ring=CyclotomicField(56))
M = H._module
chi = DirichletCharacter(H, M([0,35,28,46]))
pari:[g,chi] = znchar(Mod(2069,2784))
| Modulus: | \(2784\) | |
| Conductor: | \(2784\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(56\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{2784}(77,\cdot)\)
\(\chi_{2784}(677,\cdot)\)
\(\chi_{2784}(797,\cdot)\)
\(\chi_{2784}(917,\cdot)\)
\(\chi_{2784}(965,\cdot)\)
\(\chi_{2784}(989,\cdot)\)
\(\chi_{2784}(1013,\cdot)\)
\(\chi_{2784}(1133,\cdot)\)
\(\chi_{2784}(1157,\cdot)\)
\(\chi_{2784}(1181,\cdot)\)
\(\chi_{2784}(1229,\cdot)\)
\(\chi_{2784}(1349,\cdot)\)
\(\chi_{2784}(1469,\cdot)\)
\(\chi_{2784}(2069,\cdot)\)
\(\chi_{2784}(2189,\cdot)\)
\(\chi_{2784}(2309,\cdot)\)
\(\chi_{2784}(2357,\cdot)\)
\(\chi_{2784}(2381,\cdot)\)
\(\chi_{2784}(2405,\cdot)\)
\(\chi_{2784}(2525,\cdot)\)
\(\chi_{2784}(2549,\cdot)\)
\(\chi_{2784}(2573,\cdot)\)
\(\chi_{2784}(2621,\cdot)\)
\(\chi_{2784}(2741,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1567,2437,929,1249)\) → \((1,e\left(\frac{5}{8}\right),-1,e\left(\frac{23}{28}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(31\) | \(35\) |
| \( \chi_{ 2784 }(2069, a) \) |
\(1\) | \(1\) | \(e\left(\frac{11}{56}\right)\) | \(e\left(\frac{3}{28}\right)\) | \(e\left(\frac{9}{56}\right)\) | \(e\left(\frac{9}{56}\right)\) | \(i\) | \(e\left(\frac{43}{56}\right)\) | \(e\left(\frac{19}{28}\right)\) | \(e\left(\frac{11}{28}\right)\) | \(e\left(\frac{23}{28}\right)\) | \(e\left(\frac{17}{56}\right)\) |
sage:chi.jacobi_sum(n)