Properties

Label 2784.1757
Modulus $2784$
Conductor $2784$
Order $8$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2784, base_ring=CyclotomicField(8)) M = H._module chi = DirichletCharacter(H, M([0,3,4,6]))
 
Copy content pari:[g,chi] = znchar(Mod(1757,2784))
 

Basic properties

Modulus: \(2784\)
Conductor: \(2784\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(8\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2784.bx

\(\chi_{2784}(365,\cdot)\) \(\chi_{2784}(389,\cdot)\) \(\chi_{2784}(1757,\cdot)\) \(\chi_{2784}(1781,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{8})\)
Fixed field: 8.8.103467241779020955648.2

Values on generators

\((1567,2437,929,1249)\) → \((1,e\left(\frac{3}{8}\right),-1,-i)\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(25\)\(31\)\(35\)
\( \chi_{ 2784 }(1757, a) \) \(1\)\(1\)\(e\left(\frac{3}{8}\right)\)\(-i\)\(e\left(\frac{1}{8}\right)\)\(e\left(\frac{1}{8}\right)\)\(-i\)\(e\left(\frac{3}{8}\right)\)\(-i\)\(-i\)\(-i\)\(e\left(\frac{1}{8}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2784 }(1757,a) \;\) at \(\;a = \) e.g. 2