Properties

Label 2720.cy
Modulus $2720$
Conductor $2720$
Order $8$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2720, base_ring=CyclotomicField(8)) M = H._module chi = DirichletCharacter(H, M([0,7,2,1])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(77,2720)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(2720\)
Conductor: \(2720\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(8\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{8})\)
Fixed field: 8.0.13768681100148736000000.2

Characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(7\) \(9\) \(11\) \(13\) \(19\) \(21\) \(23\) \(27\) \(29\)
\(\chi_{2720}(77,\cdot)\) \(-1\) \(1\) \(-1\) \(e\left(\frac{3}{8}\right)\) \(1\) \(i\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{7}{8}\right)\) \(-1\) \(-i\)
\(\chi_{2720}(637,\cdot)\) \(-1\) \(1\) \(-1\) \(e\left(\frac{7}{8}\right)\) \(1\) \(i\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{3}{8}\right)\) \(-1\) \(-i\)
\(\chi_{2720}(1413,\cdot)\) \(-1\) \(1\) \(-1\) \(e\left(\frac{5}{8}\right)\) \(1\) \(-i\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{1}{8}\right)\) \(-1\) \(i\)
\(\chi_{2720}(2293,\cdot)\) \(-1\) \(1\) \(-1\) \(e\left(\frac{1}{8}\right)\) \(1\) \(-i\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{5}{8}\right)\) \(-1\) \(i\)