Properties

Label 2720.603
Modulus $2720$
Conductor $2720$
Order $8$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2720, base_ring=CyclotomicField(8)) M = H._module chi = DirichletCharacter(H, M([4,1,6,5]))
 
Copy content pari:[g,chi] = znchar(Mod(603,2720))
 

Basic properties

Modulus: \(2720\)
Conductor: \(2720\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(8\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2720.dm

\(\chi_{2720}(43,\cdot)\) \(\chi_{2720}(603,\cdot)\) \(\chi_{2720}(627,\cdot)\) \(\chi_{2720}(2467,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{8})\)
Fixed field: 8.8.13768681100148736000000.4

Values on generators

\((511,1701,2177,1601)\) → \((-1,e\left(\frac{1}{8}\right),-i,e\left(\frac{5}{8}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(13\)\(19\)\(21\)\(23\)\(27\)\(29\)
\( \chi_{ 2720 }(603, a) \) \(1\)\(1\)\(-i\)\(e\left(\frac{3}{8}\right)\)\(-1\)\(-1\)\(e\left(\frac{5}{8}\right)\)\(e\left(\frac{5}{8}\right)\)\(e\left(\frac{1}{8}\right)\)\(e\left(\frac{7}{8}\right)\)\(i\)\(1\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2720 }(603,a) \;\) at \(\;a = \) e.g. 2