sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2720, base_ring=CyclotomicField(16))
M = H._module
chi = DirichletCharacter(H, M([8,0,0,9]))
pari:[g,chi] = znchar(Mod(31,2720))
\(\chi_{2720}(31,\cdot)\)
\(\chi_{2720}(351,\cdot)\)
\(\chi_{2720}(991,\cdot)\)
\(\chi_{2720}(1151,\cdot)\)
\(\chi_{2720}(1791,\cdot)\)
\(\chi_{2720}(2111,\cdot)\)
\(\chi_{2720}(2271,\cdot)\)
\(\chi_{2720}(2591,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((511,1701,2177,1601)\) → \((-1,1,1,e\left(\frac{9}{16}\right))\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(11\) | \(13\) | \(19\) | \(21\) | \(23\) | \(27\) | \(29\) |
\( \chi_{ 2720 }(31, a) \) |
\(1\) | \(1\) | \(e\left(\frac{1}{16}\right)\) | \(e\left(\frac{11}{16}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{7}{16}\right)\) | \(i\) | \(e\left(\frac{3}{8}\right)\) | \(-i\) | \(e\left(\frac{15}{16}\right)\) | \(e\left(\frac{3}{16}\right)\) | \(e\left(\frac{5}{16}\right)\) |
sage:chi.jacobi_sum(n)