sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2720, base_ring=CyclotomicField(16))
M = H._module
chi = DirichletCharacter(H, M([8,6,12,1]))
pari:[g,chi] = znchar(Mod(3,2720))
Modulus: | \(2720\) | |
Conductor: | \(2720\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(16\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{2720}(3,\cdot)\)
\(\chi_{2720}(27,\cdot)\)
\(\chi_{2720}(243,\cdot)\)
\(\chi_{2720}(347,\cdot)\)
\(\chi_{2720}(403,\cdot)\)
\(\chi_{2720}(643,\cdot)\)
\(\chi_{2720}(907,\cdot)\)
\(\chi_{2720}(2187,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((511,1701,2177,1601)\) → \((-1,e\left(\frac{3}{8}\right),-i,e\left(\frac{1}{16}\right))\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(11\) | \(13\) | \(19\) | \(21\) | \(23\) | \(27\) | \(29\) |
\( \chi_{ 2720 }(3, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{15}{16}\right)\) | \(e\left(\frac{11}{16}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{13}{16}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(-1\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{15}{16}\right)\) | \(e\left(\frac{13}{16}\right)\) | \(e\left(\frac{7}{16}\right)\) |
sage:chi.jacobi_sum(n)