Properties

Label 2720.3
Modulus $2720$
Conductor $2720$
Order $16$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2720, base_ring=CyclotomicField(16)) M = H._module chi = DirichletCharacter(H, M([8,6,12,1]))
 
Copy content pari:[g,chi] = znchar(Mod(3,2720))
 

Basic properties

Modulus: \(2720\)
Conductor: \(2720\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(16\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2720.gz

\(\chi_{2720}(3,\cdot)\) \(\chi_{2720}(27,\cdot)\) \(\chi_{2720}(243,\cdot)\) \(\chi_{2720}(347,\cdot)\) \(\chi_{2720}(403,\cdot)\) \(\chi_{2720}(643,\cdot)\) \(\chi_{2720}(907,\cdot)\) \(\chi_{2720}(2187,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{16})\)
Fixed field: 16.0.3222801847039081120771422480760832000000000000.2

Values on generators

\((511,1701,2177,1601)\) → \((-1,e\left(\frac{3}{8}\right),-i,e\left(\frac{1}{16}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(13\)\(19\)\(21\)\(23\)\(27\)\(29\)
\( \chi_{ 2720 }(3, a) \) \(-1\)\(1\)\(e\left(\frac{15}{16}\right)\)\(e\left(\frac{11}{16}\right)\)\(e\left(\frac{7}{8}\right)\)\(e\left(\frac{13}{16}\right)\)\(e\left(\frac{1}{8}\right)\)\(-1\)\(e\left(\frac{5}{8}\right)\)\(e\left(\frac{15}{16}\right)\)\(e\left(\frac{13}{16}\right)\)\(e\left(\frac{7}{16}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2720 }(3,a) \;\) at \(\;a = \) e.g. 2