Properties

Label 2720.11
Modulus $2720$
Conductor $544$
Order $16$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2720, base_ring=CyclotomicField(16)) M = H._module chi = DirichletCharacter(H, M([8,10,0,7]))
 
Copy content pari:[g,chi] = znchar(Mod(11,2720))
 

Basic properties

Modulus: \(2720\)
Conductor: \(544\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(16\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{544}(11,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2720.ij

\(\chi_{2720}(11,\cdot)\) \(\chi_{2720}(571,\cdot)\) \(\chi_{2720}(891,\cdot)\) \(\chi_{2720}(1091,\cdot)\) \(\chi_{2720}(1331,\cdot)\) \(\chi_{2720}(1451,\cdot)\) \(\chi_{2720}(1491,\cdot)\) \(\chi_{2720}(1731,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{16})\)
Fixed field: 16.16.13200596365472076270679746481196367872.1

Values on generators

\((511,1701,2177,1601)\) → \((-1,e\left(\frac{5}{8}\right),1,e\left(\frac{7}{16}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(13\)\(19\)\(21\)\(23\)\(27\)\(29\)
\( \chi_{ 2720 }(11, a) \) \(1\)\(1\)\(e\left(\frac{13}{16}\right)\)\(e\left(\frac{9}{16}\right)\)\(e\left(\frac{5}{8}\right)\)\(e\left(\frac{11}{16}\right)\)\(e\left(\frac{1}{8}\right)\)\(1\)\(e\left(\frac{3}{8}\right)\)\(e\left(\frac{13}{16}\right)\)\(e\left(\frac{7}{16}\right)\)\(e\left(\frac{9}{16}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2720 }(11,a) \;\) at \(\;a = \) e.g. 2