sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2704, base_ring=CyclotomicField(52))
M = H._module
chi = DirichletCharacter(H, M([0,13,42]))
pari:[g,chi] = znchar(Mod(181,2704))
Modulus: | \(2704\) | |
Conductor: | \(2704\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(52\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{2704}(77,\cdot)\)
\(\chi_{2704}(181,\cdot)\)
\(\chi_{2704}(285,\cdot)\)
\(\chi_{2704}(389,\cdot)\)
\(\chi_{2704}(493,\cdot)\)
\(\chi_{2704}(597,\cdot)\)
\(\chi_{2704}(701,\cdot)\)
\(\chi_{2704}(805,\cdot)\)
\(\chi_{2704}(909,\cdot)\)
\(\chi_{2704}(1117,\cdot)\)
\(\chi_{2704}(1221,\cdot)\)
\(\chi_{2704}(1325,\cdot)\)
\(\chi_{2704}(1429,\cdot)\)
\(\chi_{2704}(1533,\cdot)\)
\(\chi_{2704}(1637,\cdot)\)
\(\chi_{2704}(1741,\cdot)\)
\(\chi_{2704}(1845,\cdot)\)
\(\chi_{2704}(1949,\cdot)\)
\(\chi_{2704}(2053,\cdot)\)
\(\chi_{2704}(2157,\cdot)\)
\(\chi_{2704}(2261,\cdot)\)
\(\chi_{2704}(2469,\cdot)\)
\(\chi_{2704}(2573,\cdot)\)
\(\chi_{2704}(2677,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((2367,677,1185)\) → \((1,i,e\left(\frac{21}{26}\right))\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(15\) | \(17\) | \(19\) | \(21\) | \(23\) |
\( \chi_{ 2704 }(181, a) \) |
\(1\) | \(1\) | \(e\left(\frac{47}{52}\right)\) | \(e\left(\frac{27}{52}\right)\) | \(e\left(\frac{12}{13}\right)\) | \(e\left(\frac{21}{26}\right)\) | \(e\left(\frac{23}{52}\right)\) | \(e\left(\frac{11}{26}\right)\) | \(e\left(\frac{12}{13}\right)\) | \(i\) | \(e\left(\frac{43}{52}\right)\) | \(-1\) |
sage:chi.jacobi_sum(n)