Properties

Label 2704.1731
Modulus $2704$
Conductor $2704$
Order $156$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2704, base_ring=CyclotomicField(156)) M = H._module chi = DirichletCharacter(H, M([78,117,85]))
 
Copy content pari:[g,chi] = znchar(Mod(1731,2704))
 

Basic properties

Modulus: \(2704\)
Conductor: \(2704\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(156\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2704.cy

\(\chi_{2704}(11,\cdot)\) \(\chi_{2704}(59,\cdot)\) \(\chi_{2704}(67,\cdot)\) \(\chi_{2704}(219,\cdot)\) \(\chi_{2704}(227,\cdot)\) \(\chi_{2704}(267,\cdot)\) \(\chi_{2704}(275,\cdot)\) \(\chi_{2704}(435,\cdot)\) \(\chi_{2704}(475,\cdot)\) \(\chi_{2704}(483,\cdot)\) \(\chi_{2704}(635,\cdot)\) \(\chi_{2704}(643,\cdot)\) \(\chi_{2704}(683,\cdot)\) \(\chi_{2704}(691,\cdot)\) \(\chi_{2704}(843,\cdot)\) \(\chi_{2704}(851,\cdot)\) \(\chi_{2704}(891,\cdot)\) \(\chi_{2704}(899,\cdot)\) \(\chi_{2704}(1051,\cdot)\) \(\chi_{2704}(1059,\cdot)\) \(\chi_{2704}(1099,\cdot)\) \(\chi_{2704}(1107,\cdot)\) \(\chi_{2704}(1259,\cdot)\) \(\chi_{2704}(1267,\cdot)\) \(\chi_{2704}(1307,\cdot)\) \(\chi_{2704}(1315,\cdot)\) \(\chi_{2704}(1467,\cdot)\) \(\chi_{2704}(1475,\cdot)\) \(\chi_{2704}(1515,\cdot)\) \(\chi_{2704}(1523,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{156})$
Fixed field: Number field defined by a degree 156 polynomial (not computed)

Values on generators

\((2367,677,1185)\) → \((-1,-i,e\left(\frac{85}{156}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(15\)\(17\)\(19\)\(21\)\(23\)
\( \chi_{ 2704 }(1731, a) \) \(1\)\(1\)\(e\left(\frac{49}{156}\right)\)\(e\left(\frac{17}{26}\right)\)\(e\left(\frac{47}{156}\right)\)\(e\left(\frac{49}{78}\right)\)\(e\left(\frac{29}{78}\right)\)\(e\left(\frac{151}{156}\right)\)\(e\left(\frac{43}{78}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{8}{13}\right)\)\(e\left(\frac{5}{6}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2704 }(1731,a) \;\) at \(\;a = \) e.g. 2