Properties

Label 2700.817
Modulus $2700$
Conductor $675$
Order $180$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2700, base_ring=CyclotomicField(180)) M = H._module chi = DirichletCharacter(H, M([0,160,117]))
 
Copy content pari:[g,chi] = znchar(Mod(817,2700))
 

Basic properties

Modulus: \(2700\)
Conductor: \(675\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(180\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{675}(142,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2700.cr

\(\chi_{2700}(13,\cdot)\) \(\chi_{2700}(97,\cdot)\) \(\chi_{2700}(133,\cdot)\) \(\chi_{2700}(277,\cdot)\) \(\chi_{2700}(313,\cdot)\) \(\chi_{2700}(337,\cdot)\) \(\chi_{2700}(373,\cdot)\) \(\chi_{2700}(517,\cdot)\) \(\chi_{2700}(553,\cdot)\) \(\chi_{2700}(637,\cdot)\) \(\chi_{2700}(673,\cdot)\) \(\chi_{2700}(697,\cdot)\) \(\chi_{2700}(733,\cdot)\) \(\chi_{2700}(817,\cdot)\) \(\chi_{2700}(853,\cdot)\) \(\chi_{2700}(877,\cdot)\) \(\chi_{2700}(913,\cdot)\) \(\chi_{2700}(997,\cdot)\) \(\chi_{2700}(1033,\cdot)\) \(\chi_{2700}(1177,\cdot)\) \(\chi_{2700}(1213,\cdot)\) \(\chi_{2700}(1237,\cdot)\) \(\chi_{2700}(1273,\cdot)\) \(\chi_{2700}(1417,\cdot)\) \(\chi_{2700}(1453,\cdot)\) \(\chi_{2700}(1537,\cdot)\) \(\chi_{2700}(1573,\cdot)\) \(\chi_{2700}(1597,\cdot)\) \(\chi_{2700}(1633,\cdot)\) \(\chi_{2700}(1717,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{180})$
Fixed field: Number field defined by a degree 180 polynomial (not computed)

Values on generators

\((1351,1001,2377)\) → \((1,e\left(\frac{8}{9}\right),e\left(\frac{13}{20}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 2700 }(817, a) \) \(-1\)\(1\)\(e\left(\frac{17}{36}\right)\)\(e\left(\frac{43}{45}\right)\)\(e\left(\frac{83}{180}\right)\)\(e\left(\frac{47}{60}\right)\)\(e\left(\frac{11}{30}\right)\)\(e\left(\frac{167}{180}\right)\)\(e\left(\frac{17}{90}\right)\)\(e\left(\frac{44}{45}\right)\)\(e\left(\frac{11}{60}\right)\)\(e\left(\frac{32}{45}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2700 }(817,a) \;\) at \(\;a = \) e.g. 2